Analysis of Coherence in Middle School Students' Representation of Particulate Concepts

중학생들의 전해질과 이온에 관련된 입자 개념 표현의 일관성 분석

  • Received : 2014.07.09
  • Accepted : 2014.08.29
  • Published : 2014.12.20


The concepts used to explain specific phenomenon can be influenced by context or coherent regardless of context. The purpose of this study is to understand middle school students' concept of particles in particular context and to investigate the effects of context on concept of particles. A conceptual questionnaire was developed to find out how students represented particles in two contexts: solid and solution states of electrolytes, and ion precipitation reaction. The questionnaire was administered to $9^{th}$ grade students after classes of 'electrolyte and ions' unit. The responses of students were analyzed using framework developed for categorization of students' concepts. The results are as follows: First, it was found that students used various concepts on particles when they explained solid and solution state of electrolytes, respectively. Second, we identified students' concepts of particles used to explain ion precipitation reaction. In addition, we recognized that majority of students failed to write correct chemical symbols. Third, approximately 79% of students showed coherent responses for explanation of particles in solution state of both electrolytes and ion precipitation reaction. About 57% of students had scientific concepts. Some suggestions were made based on results for acquisition of scientific concepts on particles in different contexts.


Particles;Ion;Atom;Electrolyte;Ion precipitation reaction


  1. Adadan, E.; Savasci, F. International Journal of Science Education 2012, 34(4), 513-544.
  2. Blown, E. J.; Bryce, T. G. K. International Journal of Science Education 2006, 28(12), 1411-1462.
  3. Devetak, I.; Vogrinc, J.; Glazar, S. A. Research in Science Education 2009, 39(2), 157-179.
  4. diSessa, A. A. Cognition and Instruction 1993, 10(2-3), 105-225.
  5. Ebenzer, J. V.; Erickson, G. L. Science Education 1996, 80(2), 181-201.<181::AID-SCE4>3.0.CO;2-C
  6. Eom, K.; Hwang, I. Research in Curriculum Instruction 2006, 10(1), 1-19.
  7. Glaazr, S. A.; Devetak, I. Acta Chimica Slovenica 2002, 49, 43-53.
  8. Kabapinar, F.; Leach, J.; Scott, P. International Journal of Science Education 2004, 26(5), 635-652.
  9. Kang, D. H.; Paik, S. H.; Park, K. T. Journal of the Korean Chemical Society 2004, 48(4), 399-413.
  10. Lee, J. A. The Analysis of High School Students' Explanatory Patterns About Electrolytes and Ions. Master's Thesis, Korea National University of Education, Chung-Buk, Korea, 2009.
  11. Lee, J.; Noh, S.; Paik, J.; Lee, B.; Kang, D.; Kim, J.; Lee, Y.; Hwang, Y.; Ko, H.; Shin, M. Middle School Science 3; Visang Publishers: Seoul, 2012.
  12. Ministry of Education, Science and Technology. Science Curriculum; Daehan Textbook Publishing: Seoul, Korea, 2007.
  13. Nakhleh, M. B.; Samarapungavan, A.; Saglam, Y. Journal of Research in Science Teaching 2005, 42, 581-612.
  14. Park, J.; Han, S.; Noh, T. Journal of Korean Association for Science Education 2010, 30(1), 42-53.
  15. Nam, C. Y.; Park, K. S.; Paik, S. H. Journal of the Korean Chemical Society 2009, 53(6), 774-783.
  16. Paik, S.; Kim, H.; Han, Y.; Kim, S. Journal of the Korean Chemical Society 2010, 54(3), 338-349.
  17. Palmer, D. H. Science Education 1999, 83(6), 639-653.<639::AID-SCE1>3.0.CO;2-O
  18. Pinarbasi, T.; Canpolat, N. Journal of Chemical Education 2003, 80(11), 1328-1332.
  19. Prieto, T.; Blanco, A.; Rodriguez, A. International Journal of Science Education 1989, 11(4), 451-463.
  20. Raviola, A. Journal of Chemical Education 2001, 78(5), 629-631.
  21. Sanger, M. J.; Greenbowe, T. J. International Journal of Science Education 2000, 22(5), 521-537.
  22. Schmidt, H.-J.; Marohn, A.; Harrison, A. G. Journal of Research in Science Teaching 2007, 44(2), 258-283.
  23. Smith, K. J.; Metz, P. A. Journal of Chemical Education 1996, 73(3), 233-235.
  24. Taber, K. S. International Journal of Science Education 2000, 22(4), 399-417.
  25. Taber, K. S. Chemical Education: Research and Practice in Europe 2001, 2(2), 123-158.
  26. Taber, K. S. International Journal of Science Education 2008, 30(8), 1027-1053.
  27. Taskin, V.; Bernholt, S. International Journal of Science Education 2014, 36(1), 157-185.
  28. Teichert, M. A.; Tien, L. T.; Anthony, S.; Rickey, D. International Journal of Science Education 2008, 30(8), 1095-1114.
  29. Tien, L. T.; Teichert, M. A.; Rickey, D. Journal of Chemical Education 2007, 84(1), 175-181.
  30. Treagust, D. F.; Chittleborough, G.; Mamiala, T. L. International Journal of Science Education 2003, 25(11), 1353-1368.
  31. Tytler, R. International Journal of Science Education 1998, 20(8), 901-927.
  32. Vosniadou, S. On the Nature of Naive Physics. In Reconsidering Conceptual Change: Issues in Theory and Practice; M. Limon, L. Mason, Eds.; Kluwer Academic Publishers: Boston, MA, 2002; pp 61-76.
  33. Vosniadou, S.; Brewer, W. F. Cognitive Science 1994, 18(1), 123-183.

Cited by

  1. An Analysis of Concept Description and Model and Student Understanding About Ionic Compound in Textbooks Developed Under the 2009 Revised National Curriculum vol.60, pp.5, 2016,
  2. Knowledge State Analysis of Ionic Equation for Middle School Students vol.59, pp.6, 2015,
  3. Types of Middle School Students' Conceptual Change on the Concept of Electrolyte and Ion vol.60, pp.1, 2016,


Supported by : the Korean Chemical Society