Development of Site Index Equation and Curves for Site Quality Assessment of Pinus caribea Monoculture Plantations in Southwestern Nigeria

Oyebade, Bukola Amoo;Osho, Johnson Sunday Ajose;Adesoye, Peter Oluremi

  • Received : 2013.06.30
  • Accepted : 2014.08.05
  • Published : 2014.11.30


Forest timber production potential of any site is oftentimes measured quantitatively by site index, which is defined as dominant height of a particular stand at a specified age. A site index was developed for estimating site quality of monoculture Pinus caribaea plantations in southwestern Nigeria using a base age of 25 years. Dominant height data were collected from 60 Temporary Sample Plots (TSPs) of $20{\times}20m$ in plantations of 15 to 37 years. Linear and non-linear models as been widely applied in quantitative forest measurements were fitted to dominant height-age data and the best site index equation is : $SI=Exp^{(InHd-23.495(A^{-2}-0.04)}$. The site index curves constructed for the three sites (Omo Forest Reserve - OFR (J4), Oluwa Forest Reserve - OLFR and Shasha Forest Reserve - SFR) across the southwestern Nigeria using the chosen equation revealed that a 15 year old Pinus caribaea in the study area attained average dominant heights of 25, 22 and 21 m in OFR (J4), OLFR and SFR respectively. The site index equation and curves proffer veritable insight into better silvicultural options and management practices for the future plantations suitable sites.


site quality;dominant height;index age;Pinus caribaea;timber production potential


  1. Beaumont JF, Ung CH, Bernier-Cardou M. 1999. Relating site index to ecological factors in black spruce stands: tests of hypotheses. Forest Science 45: 484-491.
  2. Akindele SO. 1991. Development of a site index equation for teak plantations in southwestern Nigeria. Journal of Tropical Forest Science 4: 162-169.
  3. Akindele SO. 1990. Site quality assessment and yield equations for teak plantations in the dry forest area of Nigeria. Ph. D. Thesis. University of Ibadan, Ibadan, Nigeria.
  4. Bailey RL, Clutter JL. 1974. Base-age invariant polymorphic site curves. Forest Science 20: 155-159.
  5. Clutter JL, Fortson JC, Pienaar LV, Brister GH, Bailey RL. 1983. Timber management: a quantitative approach. Wiley, New York, N.Y, pp 333
  6. Hagglund B. 1981. Evaluation of forest site productivity. Commonwealth Forestry Bureau. Forest Abstracts Review Article 42: 515-527.
  7. Huebschmann M, Martin J. 1996. Estimating and interpreting site index. G3361 Lake States Woodlands. University of Wisconsin Report Paper. pp 4.
  8. Johansson T. 1995. Site index curves for Norway spruce plantations on farmland with different soil types. Studia forestalia Suecica, 198. pp 19.
  9. Johansson T. 1996. Site index curves for European aspen (Populus tremula L.) growing on forest land of different soils in Sweden. Silva Fennica 30: 437-458.
  10. Johansson T. 2012. Site Index Curves for Young Hybrid Larch Growing on Former Farmland in Sweden. Forests 3: 723-735.
  11. Lamprecht H. 1990. Silvicultura en los tropicos: los ecosistemas forestales en los bosques tropicales y sus especies arboreas : posibilidades y metodos para un aprovechimiento sostenido. Deutsche Gesellschaft fur Technische Zusammenarbeit, Eschborn, pp 340.
  12. Malende YH, Temu AB. 1990. Site-index curves and volume growth of teak (Tectona grandis) at Mtibwa, Tanzania. Forest Ecology and Management 31: 91-99.
  13. Onyekwelu JC. 2005. Site index curves for site quality assessment of Nauclea diderrichii monoculture plantations in Omo forest reserve, Nigeria. Journal of Tropical Forest Science 17: 532-542.
  14. Mehtatalo L. 2005. Height-diameter models for Scots pine and birch in Finland. Silva Fennica 39: 55-66.
  15. Mehtatalo L. 2004. A longitudinal height-diameter model for Norway spruce in Finland. Canadian Journal of Forest Research 34: 131-140.
  16. Monserud RA. 1984. Height growth and site index curves for inland Douglas-fir based on stem analysis data and forest habitat type. Forest Science 30: 943-965.
  17. Onyekwelu JC. 2003. Choosing appropriate index age for estimating site index of Gmelina arborea timber plantations in Oluwa forest reserve. Food Agriculture and Environment 1: 286-290.
  18. Onyekwelu JC, El Kateb H, Stimm B, Mosandl R. 2003. Growth characteristics of Nauclea diderrichii (De Wild.) Merr. in unthinned plantations in south-western Nigeria. In: Waldbau - weltweit : Beitrage zur internationalen Waldbauforschung (Mosandl R, El Kateb H Stimm B, eds). Forstliche Forschungsberichte Munich, Freising, pp 147-163.
  19. Onyekwelu JC. 2001. Growth characteristics and management scenarios for plantation-grown Gmelina arborea and Nauclea diderrichii in south-western Nigeria. Heieronymus Verlag, Munich, pp 196.
  20. Onyekwelu JC, Fuwape JA. 1998. Site index equation for Gmelina arborea pulpwood in Oluwa Forest Reserve, Nigeria. Journal of Tropical Forest Science 10: 337-345.
  21. Schumacher FX. 1939. A new growth curve and its application to timber yield studies. Journal of Forestry 37: 819-820.
  22. Swenson JJ, Waring RH, Fan W, Coops N. 2005. Predicting site index with a physiologically based growth model across Oregon, USA. Can J For Res 35: 1697-1707.
  23. Teshome T, Petty JA. 2000. Site index equation for Cupressus lusitanica stands in Munessa forest, Ethiopia. Forest Ecology and Management 126: 339-347.
  24. Wang DH, Tang SC, Hsieh HC, Chung CH. 2008. Site index curve for Taiwania plantations in the Liukuei area. Taiwan J For Sci 23: 335-349.
  25. Waring RH, Milner KS, Jolly WM, Phillips L, McWethy D. 2006. Assessment of site index and forest growth capacity across the Pacific and Inland Northwest U.S.A. with a MODIS satellite-derived vegetation index. Forest Ecology and Management 228: 285-291.
  26. Waring RH, Coops NC, Ohmann JL, Sarr DA. 2002. Interpreting woody plant richness from seasonal ratios of photosynthesis. Ecology 83: 2964-2970.[2964:IWPRFS]2.0.CO;2