DOI QR코드

DOI QR Code

STRUCTURE OF SOME CLASSES OF SEMISIMPLE GROUP ALGEBRAS OVER FINITE FIELDS

  • Makhijani, Neha (Department of Mathematics Indian Institute of Technology) ;
  • Sharma, Rajendra Kumar (Department of Mathematics Indian Institute of Technology) ;
  • Srivastava, J.B. (Department of Mathematics Indian Institute of Technology)
  • Received : 2013.08.10
  • Published : 2014.11.30

Abstract

In continuation to the investigation initiated by Ferraz, Goodaire and Milies in [4], we provide an explicit description for the Wedderburn decomposition of finite semisimple group algebras of the class of finite groups G, such that $$G/Z(G){\simeq_-}C_2{\times}C_2$$, where Z(G) denotes the center of G.

References

  1. R. A. Ferraz, E. G. Goodaire, and C. P. Milies, Some classes of semisimple group (and loop) algebras over finite fields, J. Algebra 324 (2010), no. 12, 3457-3469. https://doi.org/10.1016/j.jalgebra.2010.09.005
  2. G. K. Bakshi, S. Gupta, and I. B. S. Passi, The algebraic structure of finite metabelian group algebras, arXiv:1311.1296 [math.RT], to appear in Comm. Algebra.
  3. P. Charpin, The Reed-Solomon code as ideals of a modular algebra, C. R. Acad. Sci. Paris Ser. I Math. 294 (1982), no. 17, 597-600.
  4. R. A. Ferraz, Simple components of the center of FG/J(FG), Comm. Algebra 36 (2008), no. 9, 3191-3199. https://doi.org/10.1080/00927870802103503
  5. E. Jespers, G. Leal, and C. P. Milies, Classifying indecomposable R.A. loops, J. Algebra 176 (1995), no. 2, 569-584. https://doi.org/10.1006/jabr.1995.1260
  6. G. Leal and C. P. Milies, Isomorphic group (and loop) algebras, J. Algebra 155 (1993), no. 1. 195-210. https://doi.org/10.1006/jabr.1993.1039
  7. C. P. Milies and S. K. Sehgal, An Introduction to Group Rings, Kluwer Academic Publishers, Dordrecht, 2002.
  8. V. S. Pless and W. C. Huffman, Handbook of Coding Theory, Elsevier, New York, 1998.
  9. R. E. Sabin and S. J. Lomonaco, Metacyclic error-correcting codes, Appl. Algebra Engrg. Comm. Comput. 6 (1995), no. 3, 191-210. https://doi.org/10.1007/BF01195337

Cited by

  1. Finite semisimple group algebra of a normally monomial group pp.1793-6500, 2018, https://doi.org/10.1142/S0218196718500674