DOI QR코드

DOI QR Code

INCLUSION AND NEIGHBORHOOD PROPERTIES OF CERTAIN SUBCLASSES OF p-VALENT ANALYTIC FUNCTIONS OF COMPLEX ORDER INVOLVING A LINEAR OPERATOR

  • Sahoo, Ashok Kumar ;
  • Patel, Jagannath
  • Received : 2013.08.29
  • Published : 2014.11.30

Abstract

By making use of the familiar concept of neighborhoods of analytic functions, we prove several inclusion relationships associated with the (n, ${\delta}$)-neighborhoods of certain subclasses of p-valent analytic functions of complex order with missing coefficients, which are introduced here by means of the Saitoh operator. Special cases of some of the results obtained here are shown to yield known results.

Keywords

p-valent analytic functions;complex order;inclusion relationships;Hadamard product;quasi-Hadamard product;subordination;neighborhood

References

  1. O. Altintas and S. Owa, Neighborhoods of certain analytic functions with negative coefficients, Internat. J. Math. Math. Sci. 19 (1996), no. 4, 797-800. https://doi.org/10.1155/S016117129600110X
  2. O. P. Ahuja, Hadamard product of analytic functions defined by Ruscheweyh derivatives, in Current Topics in Analytic Function Theory, H. M. Srivastava and S. Owa (Eds.), pp. 13-28, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.
  3. M. K. Aouf, A subclass of p-valent functions with negative coefficients, Utilitas Math. 46 (1994), 219-231.
  4. M. K. Aouf, Neighborhoods of a certain family of multivalent functions defined by using a fractional derivative operator, Bull. Belg. Math. Soc. Simon Stevin 16 (2009), no. 1, 31-40.
  5. O. Altintas, O. Ozkan, and H. M. Srivastava, Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Lett. 13 (2000), no. 3, 63-67.
  6. O. Altintas, O. Ozkan, and H. M. Srivastava, Neighborhoods of a certain family of multivalent functions with negative coefficients, Comput. Math. Appl. 47 (2004), no. 10-11, 1667-1672. https://doi.org/10.1016/j.camwa.2004.06.014
  7. B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 159 (1984), no. 4, 737-745.
  8. P. L. Duren, Univalent Functions, A Series of Comprehensive Studies in Mathematics, Vol. 259, Springer-Verlag, New York, Berlin, Heidelberg, and Tokyo, 1983.
  9. B. A. Frasin, Family of analytic functions of complex order, Acta Math. Acad. Paedagog. Nyhazi.(N.S.) 22 (2006), no. 2, 179-191.
  10. R. M. Goel and N. S. Sohi, A new criterion for p-valent functions, Proc. Amer. Math. Soc. 78 (1980), no. 3, 353-357.
  11. A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc. 8 (1957), 598-601. https://doi.org/10.1090/S0002-9939-1957-0086879-9
  12. S. K. Lee, S. Owa, and H. M. Srivastava, Basic properties and characterizations of a certain class of analytic functions with negative coefficients, Utilitas Math. 36 (1989), 121-128.
  13. J.-L. Liu and K. I. Noor, Some properties of Noor integral operator, J. Nat. Geom. 21 (2002), no. 1-2, 81-90.
  14. S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), no. 2, 157-172. https://doi.org/10.1307/mmj/1029002507
  15. S. Owa, On certain classes of p-valent functions with negative coefficients, Simon Stevin 59 (1985), no. 4, 385-402.
  16. S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, in: Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker, New York, 2000.
  17. G. Murugusundaramoorthy and H. M. Srivastava, Neighborhoods of certain classes of analytic functions of complex order, J. Inequal. Pure Appl. Math. 5 (2004), no. 2, Article 24, 8 pp.
  18. M. A. Nasr and M. K. Aouf, Starlike functions of complex order, J. Natur. Sci. Math. 25 (1985), no. 1, 1-12.
  19. J. Patel and A. K. Mishra, On certain subclasses of multivalent functions associated with an extended fractional differintegral operator, J. Math. Anal. Appl. 332 (2007), no. 1, 109-122. https://doi.org/10.1016/j.jmaa.2006.09.067
  20. R. K. Raina and H. M. Srivastava, Inclusion and neighborhood properties of some analytic and multivalent functions, J. Inequal. Pure Appl. Math. 7 (2006), no. 1, Article 5, 6 pp.
  21. St. Ruscheweyh, New criteria for univalent functions, Proc. Amer.Math. Soc. 49 (1975), 109-115. https://doi.org/10.1090/S0002-9939-1975-0367176-1
  22. St. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 8 (1981), no. 4, 521-527.
  23. H. Saitoh, A linear operator and its application of first order differential subordinations, Math. Japon. 44 (1996), no. 1, 31-38.
  24. H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116. https://doi.org/10.1090/S0002-9939-1975-0369678-0
  25. H. Silverman, Neighborhoods of classes of analytic functions, Far East J. Math. Sci. 3 (1995), no. 2, 165-169.
  26. H. M. Srivastava and S. Owa(Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.
  27. P. Wiatrowski, The coefficients of some family of holomorphic functions, Zeszyty Nauk. Uniw. Lodz Nauk. Mat.-Przyrod. (2) 39 (1970), 75-85.
  28. H. S. Wilf, Subordinating factor sequences for convex maps of the unit circle, Proc. Amer. Math. Soc. 12 (1961), 689-693. https://doi.org/10.1090/S0002-9939-1961-0125214-5