# A NONCONFORMING PRIMAL MIXED FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS

• Cho, Sungmin (Department of Mathematics Yonsei University) ;
• Park, Eun-Jae (Department of Mathematics and Department of Computational Science and Engineering Yonsei University)
• Published : 2014.11.30

#### Abstract

In this article, we propose and analyze a new nonconforming primal mixed finite element method for the stationary Stokes equations. The approximation is based on the pseudostress-velocity formulation. The incompressibility condition is used to eliminate the pressure variable in terms of trace-free pseudostress. The pressure is then computed from a simple post-processing technique. Unique solvability and optimal convergence are proved. Numerical examples are given to illustrate the performance of the method.

#### Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

#### References

1. D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates, RAIRO Model. Math. Anal. Numer. 19 (1985), no. 1, 7-32.
2. D. N. Arnold and R. S. Falk, A new mixed formulation for elasticity, Numer. Math. 53 (1988), no. 1-2, 13-30. https://doi.org/10.1007/BF01395876
3. G. R. Barrenechea and G. N. Gatica, A primal mixed formulation for exterior transmission problems in ${\mathbf{R}}^2$, Numer. Math. 88 (2001), no. 2, 237-253. https://doi.org/10.1007/PL00005444
4. G. R. Barrenechea, G. N. Gatica, and J.-M. Thomas, Primal mixed formulations for the coupling of FEM and BEM. I. Linear problems, Numer. Funct. Anal. Optim. 19 (1998), no. 1-2, 7-32. https://doi.org/10.1080/01630569808816812
5. D. Braess, C. Carstensen, and B. D. Reddy, Uniform convergence and a posteriori error estimators for the enhanced strain finite element method, Numer. Math. 96 (2004), no. 3, 461-479. https://doi.org/10.1007/s00211-003-0486-5
6. C. Bernardi, V. Girault, and K. R. Rajagopal, Discretization of an unsteady flow through porous solid modeled by Darcy's equations, Math. Models Methods Appl. Sci. 18 (2008), no. 12, 2087-2123. https://doi.org/10.1142/S0218202508003303
7. D. Braess, Finite Elements, Cambridge University Press, 1997.
8. D. Braess, Enhanced assumed strain elements and locking in membrane problems, Comput. Methods Appl. Mech. Engrg. 165 (1998), no. 1-4, 155-174. https://doi.org/10.1016/S0045-7825(98)00037-1
9. S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Second edition. Texts in Applied Mathematics, 15, Springer-Verlag, New York, 2002.
10. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, 15, Springer-Verlag, New York, 1991.
11. F. Brezzi, L. D. Marini, and P. Pietra, Two-dimensional exponential fitting and applications to drift-diffusion models, SIAM J. Numer. Anal. 26 (1989), no. 6, 1342-1355 https://doi.org/10.1137/0726078
12. Z. Cai, B. Lee, and P. Wang, Least-squares methods for incompressible Newtonian fluid flow: linear stationary problems, SIAM J. Numer. Anal. 42 (2004), no. 2, 843-859. https://doi.org/10.1137/S0036142903422673
13. Z. Cai and G. Starke, First-order system least squares for the stress-displacement formulation: linear elasticity, SIAM J. Numer. Anal. 41 (2003), no. 2, 715-730. https://doi.org/10.1137/S003614290139696X
14. Z. Chen and J. Douglas, Jr, Approximation of coefficients in hybrid and mixed methods for nonlinear parabolic problems, Mat. Apl. Comput. 10 (1991), no. 2, 137-160.
15. P. G. Ciarlet, Finite Element Method for Elliptic Problems, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002.
16. P. Clement, Approximation by finite element functions using local regularization, RAIRO Analyse Numerique 9 (1975), no. R-2, 77-84.
17. M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations, RAIRO Anal. Numer. 7 (1973), no. R-3, 33-75.
18. M. Gerritsma and T. Phillips, Compatible spectral approximations for the velocity-stress-pressure formulation of the Stokes problem, SIAM J. Numer. Anal. 28 (1991), 591-623. https://doi.org/10.1137/0728033
19. M. Norburn and D. Silvester, Stable vs. stabilised mixed methods for incompressible flow, Computer Methods in Applied Mechanics and Engineering 166 (1998), 131-141. https://doi.org/10.1016/S0045-7825(98)00087-5
20. V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations: theory and algorithms, Springer Series in Computational Mathematics 5, 1986.
21. D. Kim and E.-J. Park, Primal mixed finite-element approximation of elliptic equations with gradient nonlinearities, Comput. Math. Appl. 51 (2006), no. 5, 793-804. https://doi.org/10.1016/j.camwa.2006.03.006
22. D. Kim and E.-J. Park, A priori and a posteriori analysis of mixed finite element methods for nonlinear elliptic equations, SIAM J. Numer. Anal. 48 (2010), no. 3, 1186-1207. https://doi.org/10.1137/090747002
23. J. Park, A primal mixed domain decomposition procedure based on the nonconforming streamline diffusion method, Appl. Numer. Math. 50 (2004), no. 2, 165-181. https://doi.org/10.1016/j.apnum.2003.12.020
24. J. E. Roberts and J. M. Thomas, Mixed and Hybrid methods, Handbook of Numerical Analysis (P. G. Ciarlet and J. L. Lions, eds.) Vol II, 523-639, Finite Element Methods (Part 1), North-Holland, Amsterdam, 1989.
25. J. C. Simo and M. S. Rifai, A class of mixed assumed strain methods and the method of incompatible modes, Internat. J. Numer. Methods Engrg. 29 (1990), no. 8, 1595-1638. https://doi.org/10.1002/nme.1620290802
26. S. T. Yeo and B. C. Lee, Equivalence between enhanced assumed strain method and assumed stress hybrid method based on the Hellinger-Reissner principle, Internat. J. Numer. Methods Engrg. 39 (1996), no. 18, 3083-3099. https://doi.org/10.1002/(SICI)1097-0207(19960930)39:18<3083::AID-NME996>3.0.CO;2-F