• Kim, Kijung (Department of Mathematics Pusan National University)
  • Received : 2013.10.01
  • Published : 2014.11.30


Recently, it was proved that every p-Schur ring over an abelian group of order $p^3$ is Schurian. In this paper, we prove that every commutative p-Schur ring over a non-abelian group of order $p^3$ is Schurian.


Supported by : National Research Foundation of Korea (NRF)


  1. J. R. Cho, M. Hirasaka, and K. Kim, On p-schemes of order $p^3$, J. Algebra 369 (2012), 369-380.
  2. J. D. Dixon and B. Mortimer, Permutation Groups, Springer, 1996.
  3. S. Evdokimov and I. Ponomarenko, On a family of Schur rings over a finite cyclic group, Algebra Anal. 13 (2001), no. 3, 139-154; translation in St. Petersburg Math. J. 13 (2002), no. 3, 441-451.
  4. D. Gluck, A note on permutation polynomials and finite geometry, Discrete Math. 80 (1990), 97-100.
  5. S. S. Gustav, L. Johan, and B. Gustav, On p-groups of low power order, KTH, 2010.
  6. A. Hanaki and I. Miyamoto, Classification of association schemes of small order, Online catalogue.
  7. Y. Hiramine, On planar functions, J. Algebra 133 (1990), no. 1, 103-110.
  8. M. Hirasaka and M. Muzychuk, An elementary abelian group of rank 4 is a CI-group, J Combin. Theory Ser. A 94 (2001), no. 2, 339-362.
  9. K. Kim, Characterization of p-schemes of prime cube order, J. Algebra 331 (2011), 1-10.
  10. K. Kim, On p-Schur rings over abelian groups of order $p^3$, Comm. Algebra 42 (2014), 4470-4477.
  11. M. Kh. Klin, The axiomatics of cellular rings, Investigations in the algebraic theory of combinatorial objects, Vsesoyuz. Nauchno-Issled. Inst. Sistem. Issled., Moscow, pp. 6-32, 1985 (in Russian).
  12. M. Muzychuk and I. Ponomarenko, Schur rings, European J. Combin. 30 (2009), no. 6, 1526-1539.
  13. A. Pott, Finite Geometry and Character Theory, Lecture Notes in Math., vol. 1601, Springer, Berlin, 1995.
  14. L. Ronyai, T. Szonyi, Planar functions over finite fields, Combinatorica 9 (1989), no. 3, 315-320.
  15. P. Spiga and Q. Wang, An answer to Hirasaka and Muzychuk: Every p-Schur ring over $C_p^3$ is Schurian, Discrete Math. 308 (2008), no. 9, 1760-1763.
  16. H. Wielandt, Finite Permutation Groups, Academic Press, Berlin, 1964.
  17. P.-H. Zieschang, Association schemes in which the thin residue is a finite cyclic group, J. Algebra 324 (2010), no. 12, 3572-3578.
  18. P.-H. Zieschang, Theory of Association Schemes, Springer Monographs in Mathematics, Springer, Berlin, 2005.