DOI QR코드

DOI QR Code

COMMUTATIVE p-SCHUR RINGS OVER NON-ABELIAN GROUPS OF ORDER p3

  • Kim, Kijung (Department of Mathematics Pusan National University)
  • Received : 2013.10.01
  • Published : 2014.11.30

Abstract

Recently, it was proved that every p-Schur ring over an abelian group of order $p^3$ is Schurian. In this paper, we prove that every commutative p-Schur ring over a non-abelian group of order $p^3$ is Schurian.

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. J. R. Cho, M. Hirasaka, and K. Kim, On p-schemes of order $p^3$, J. Algebra 369 (2012), 369-380. https://doi.org/10.1016/j.jalgebra.2012.06.026
  2. J. D. Dixon and B. Mortimer, Permutation Groups, Springer, 1996.
  3. S. Evdokimov and I. Ponomarenko, On a family of Schur rings over a finite cyclic group, Algebra Anal. 13 (2001), no. 3, 139-154; translation in St. Petersburg Math. J. 13 (2002), no. 3, 441-451.
  4. D. Gluck, A note on permutation polynomials and finite geometry, Discrete Math. 80 (1990), 97-100. https://doi.org/10.1016/0012-365X(90)90299-W
  5. S. S. Gustav, L. Johan, and B. Gustav, On p-groups of low power order, KTH, 2010.
  6. A. Hanaki and I. Miyamoto, Classification of association schemes of small order, Online catalogue. http://kissme.shinshu-u.ac.jp/as.
  7. Y. Hiramine, On planar functions, J. Algebra 133 (1990), no. 1, 103-110. https://doi.org/10.1016/0021-8693(90)90071-U
  8. M. Hirasaka and M. Muzychuk, An elementary abelian group of rank 4 is a CI-group, J Combin. Theory Ser. A 94 (2001), no. 2, 339-362. https://doi.org/10.1006/jcta.2000.3140
  9. K. Kim, Characterization of p-schemes of prime cube order, J. Algebra 331 (2011), 1-10. https://doi.org/10.1016/j.jalgebra.2011.01.014
  10. K. Kim, On p-Schur rings over abelian groups of order $p^3$, Comm. Algebra 42 (2014), 4470-4477.
  11. M. Kh. Klin, The axiomatics of cellular rings, Investigations in the algebraic theory of combinatorial objects, Vsesoyuz. Nauchno-Issled. Inst. Sistem. Issled., Moscow, pp. 6-32, 1985 (in Russian).
  12. M. Muzychuk and I. Ponomarenko, Schur rings, European J. Combin. 30 (2009), no. 6, 1526-1539. https://doi.org/10.1016/j.ejc.2008.11.006
  13. A. Pott, Finite Geometry and Character Theory, Lecture Notes in Math., vol. 1601, Springer, Berlin, 1995.
  14. L. Ronyai, T. Szonyi, Planar functions over finite fields, Combinatorica 9 (1989), no. 3, 315-320. https://doi.org/10.1007/BF02125898
  15. P. Spiga and Q. Wang, An answer to Hirasaka and Muzychuk: Every p-Schur ring over $C_p^3$ is Schurian, Discrete Math. 308 (2008), no. 9, 1760-1763. https://doi.org/10.1016/j.disc.2007.04.021
  16. H. Wielandt, Finite Permutation Groups, Academic Press, Berlin, 1964.
  17. P.-H. Zieschang, Association schemes in which the thin residue is a finite cyclic group, J. Algebra 324 (2010), no. 12, 3572-3578. https://doi.org/10.1016/j.jalgebra.2010.04.013
  18. P.-H. Zieschang, Theory of Association Schemes, Springer Monographs in Mathematics, Springer, Berlin, 2005.