• Zhang, Ran-Ran (Department of Mathematics Guangdong University of Education) ;
  • Huang, Zhi-Bo (School of Mathematical Sciences South China Normal University)
  • Received : 2013.11.12
  • Published : 2014.11.30


In this paper, we investigate the finite order transcendental meromorphic solutions of complex difference equation of Malmquist type $$\prod_{i=1}^{n}f(z+c_i)=R(z,f)$$, where $c_1,{\ldots},c_n{\in}\mathbb{C}{\backslash}\{0\}$, and R(z, f) is an irreducible rational function in f(z) with meromorphic coefficients. We obtain some results on deficiencies of the solutions. Using these results, we prove that the growth order of the finite order solution f(z) is 1, if f(z) has Borel exceptional values $a({\in}\mathbb{C})$ and ${\infty}$. Moreover, we give the forms of f(z).


Supported by : National Natural Science Foundation of China, Natural Science Foundation of Guangdong Province in China


  1. W. Bergweiler and J. K. Langley, Zeros of differences of meromorphic functions, Math. Proc. Cambridge Philos. Soc. 142 (2007), no. 1, 133-147.
  2. Z. X. Chen, On growth, zeros and poles of meromorphic solutions of linear and nonlinear difference equations, Sci. China Math. 54 (2011), no. 10, 2123-2133.
  3. Z. X. Chen, On properties of meromorphic solutions for difference equations concerning gamma function, J. Math. Anal. Appl. 406 (2013), no. 1, 147-157.
  4. Y. M. Chiang and S. J. Feng, On the Nevanlinna characteristic of f($z+{\eta}$) and difference equations in the complex plane, Ramanujan J. 16 (2008), no. 1, 105-129.
  5. F. Gross, Factorization of Meromorphic Functions, Washington D. C., U. S. Government Printing Office, 1972.
  6. R. G. Halburd and R. J. Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl. 314 (2006), no. 2, 477-487.
  7. W. K. Hayman, Meromorphic Functions, Oxford, Clarendon Press, 1964.
  8. J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo, and K. Tohge, Complex difference equations of Malmquist type, Comput. Methods Funct. Theory 1 (2001), no. 1, 27-39.
  9. Z. B. Huang, Z. X. Chen, and Q. Li, On properties of meromorphic solutions for complex difference equation of Malmquist type, Acta Math. Sci. Ser. B 33 (2013), no. 4, 1141-1152.
  10. K. Ishizaki, On difference Riccati equations and second order linear difference equations, Aequationes Math. 81 (2011), no. 1-2, 185-198.
  11. R. Korhonen, A new Clunie type theorem for difference polynomials, J. Difference Equ. Appl. 17 (2011), no. 3, 387-400.
  12. I. Laine, Nevanlinna Theory and Complex Differential Equations, Berlin,W. de Gruyter, 1993.
  13. I. Laine and C. C. Yang, Clunie theorems for difference and q-difference polynomials, J. Lond. Math. Soc. 76 (2007), no. 3, 556-566.
  14. L. Yang, Value Distribution Theory and New Research, Beijing, Science Press, 1982.
  15. C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publisher, 2003.
  16. R. R. Zhang and Z. X. Chen, Value distribution of difference polynomials of meromorphic functions, Sci. Sin. Math. 42 (2012), no. 11, 1115-1130.
  17. R. R. Zhang and Z. X. Chen, On meromorphic solutions of Riccati and linear difference equations, Acta Math. Sci. Ser. B 33 (2013), no. 5, 1243-1254.
  18. X. M. Zheng and J. Tu, Growth of meromorphic solutions of linear difference equations, J. Math. Anal. Appl. 384 (2011), no. 2, 349-356.