DOI QR코드

DOI QR Code

H2S Gas Sensing Properties of CuO Nanotubes

Kang, Wooseung;Park, Sunghoon

  • 투고 : 2014.11.11
  • 심사 : 2014.11.26
  • 발행 : 2014.11.30

초록

CuO nanotubes are synthesized using $TeO_2$ nanorod templates for application to $H_2S$ gas sensors. $TeO_2$ nanorod templates were synthesized by using the VS method through thermal evaporation. Scanning electron microscopy, transmission electron microscopy and X-ray diffraction showed that the synthesized nanotubes were monoclinic-structured polycrystalline CuO with diameter and wall thickness of approximately 100~300 nm and 5~10 nm, respectively. The CuO nanotube sensor showed responses of 136~325% for the $H_2S$ concentration of 0.1~5 ppm at room temperature. These response values are approximately twice as high as that of the CuO nanowire sensor for the same concentrations of $H_2S$ gas. Along with the investigation of the performance of the sensors, the mechanisms of $H_2S$ gas sensing of the CuO nanotubes are also discussed in this study.

키워드

CuO;Nanotube;$H_2S$;Gas sensor

참고문헌

  1. J. Zhang, J. Liu, Q. Peng, X. Wang, and Y. Li, Chem. Mater. 18, 867 (2006). https://doi.org/10.1021/cm052256f
  2. J. Chen, K. Wang, L. Hartman, and W. Zhou, J. Phys. Chem. C 112, 16017 (2008). https://doi.org/10.1021/jp805919t
  3. J. Chao, X. Xu, H. Huang, Z. Liu, B. Liang, X. Wang, S. Ran, D. Chen, and G. Shen, Cryst. Eng. Comm. 14, 6654 (2012). https://doi.org/10.1039/c2ce25089f
  4. N. Singh, R.K. Gupta, and P.S. Lee, ACS Appl. Mater. Interfaces, 3, 2246 (2011). https://doi.org/10.1021/am101259t
  5. S. Niu, Y. Hu, X. Wen, Y. Zhou, F. Zhang, L. Lin, S. Wang, and Z.L. Wang, Adv. Mater. 25, 3701 (2013). https://doi.org/10.1002/adma.201301262
  6. D. Li, J. Hu, R. Wu, and J.G. Lu, Nanotechnol. 21, 485502 (2010). https://doi.org/10.1088/0957-4484/21/48/485502
  7. E. Comini, Metal oxide nano-crystals for gas sensing, Anal. Chim. Acta 568, 28 (2006). https://doi.org/10.1016/j.aca.2005.10.069
  8. Y. Qin, F. Zhang, Y. Chen, Y. Zhou, J. Li, A. Zhu, Y. Luo, Y. Tian, and J. Yang, J. Phys. Chem. C 116, 11994 (2012). https://doi.org/10.1021/jp212029n
  9. N. Barsan, C. Simion, T. Heine, S. Pokhrel, and U. Weimar, J. Electroceram. 25, 11 (2010). https://doi.org/10.1007/s10832-009-9583-x
  10. L. Xu, R. Xing, J. Song, W. Xu, and H. Song, J. Mater. Chem. C 1, 2174 (2013). https://doi.org/10.1039/c3tc00689a
  11. J. Fu, C. Zhao, J. Zhang, Y. Peng, and E. Xie, ACS Appl. Mater. Interfaces 5, 7410 (2013). https://doi.org/10.1021/am4017347
  12. H. Kim, C. Jin, S. Park, S. Kim, and C. Lee, Sens. Actuators B 161, 594 (2012). https://doi.org/10.1016/j.snb.2011.11.006
  13. S. An, S. Park, H. Ko, and C. Lee, Ceram. Int. 40, 1423 (2014). https://doi.org/10.1016/j.ceramint.2013.07.025
  14. N.S. Ramgir, S.K. Ganapathi, M. Kaur, N. Datta, K.P. Muthe, D.K. Aswal, S.K. Gupta, and J.V. Yakhmi, Sens. Actuators B 151, 90 (2010). https://doi.org/10.1016/j.snb.2010.09.043
  15. J. Chen, K. Wang, L. Hartman, and W. Zhou, J. Phys. Chem. C 112, 16017 (2008). https://doi.org/10.1021/jp805919t
  16. K. Saetia, J.M. Schnorr, M.M. Mannarino, S.Y. Kim, G.C. Rutledge, T.M. Swager, and P.T. Hammond, Adv. Func. Mater. 24, 492 (2014). https://doi.org/10.1002/adfm.201302344
  17. M. Hubner, C.E. Simion, A. Tomescu-Stanoiu, S. Pokhrel, N. Barsan, and U. Weimar, Sens. Actuators B 153, 347 (2011). https://doi.org/10.1016/j.snb.2010.10.046
  18. C. A. Grimes, J. Mater. Chem. 17, 1451 (2007). https://doi.org/10.1039/b701168g