DOI QR코드

DOI QR Code

A Study of Electrode Locations for Design of ECG Monitoring Smart Clothing based on Body Mapping

심전도 모니터링 스마트 의류 디자인을 위한 바디매핑 기반 전극 위치 연구

Cho, Hakyung;Cho, Sang woo
조하경;조상우

  • Received : 2015.11.10
  • Accepted : 2015.12.22
  • Published : 2015.12.31

Abstract

The increase in the need for a 24 hour monitoring of biological signals has been accompanied by an increasing interest in wearable systems that can register ECG at any time and place. ECG-monitoring clothing is a wearable system that records heart function continuously, but there have been difficulties in making accurate measurements due to motion artifacts. Although various factors may cause noise in measurements due to motion, the variations in the body surface and clothing during movements that cause eventual the shifting and displacement of the electrodes is particularly noteworthy. Therefore, this study used biomedical body mapping and a motion-capture system to measure and analyze the changes in the body surface and garment during movements. It was deduced that the area where the friction and separation between the garment and skin is the lowest would be the appropriate location to place the ECG electrodes. For this study, 5 male and 5 female in their 20s were selected as subjects, and through their selected body movements, the changes in the garment and skin were analyzed using the motion-capture system. As a result, the area below the chest circumference and the area below the shoulder blades were proposed as the optimal location of electrode for ECG monitoring.

Keywords

body mapping;3D motion capture;skin change rate;clothing change rate;optimal location of electrode

References

  1. Watkins, S. M. (1984). Clothing: The portable environment. Ames, IA: Iowa State University Press.
  2. Yu, J. A., Sun, Y., & Kim, K. J. (2012). Preparation of conductive nanoweb through electrospinning followed by electroless silver-plating and its application as dry-type electrode for ECG measurement. Textile Science and Engineering, 49(1), 47-55. doi:10.12772/TSE.2012.49.1.047 https://doi.org/10.12772/TSE.2012.49.1.047
  3. Mohindra, R., Sapp, J. L., Clements, J. C., & Horáček, B. N. (2007, September). Use of body-surface potential mapping and computer model simulations for optimal programming of cardiac resynchronization therapy devices. Proceeding of Conference of Computers in Cardiology (pp. 69-72). Durham, North Carolina, US: IEEE. doi:10.1109/CIC.2007.4745423 https://doi.org/10.1109/CIC.2007.4745423
  4. ‘Motion capture system’. (2011, August 19). Dooree system. Retrieved from http://www.dooreesystem.com/cafe/view.html
  5. Ornato, J. P., Menown, I. B., Riddell, J. W., Carley, S., Mackway-Jones, K., Higgins, G. L., Peberdy, M. A., Kontos, M. C., Maynard, S. J., & Jennifer Adgey, A. A. (2002). 80-Lead body map detects acute ST elevation myocardial infarction missed by standard 12-lead electrocardiography. Journal of the American College of Cardiology, 39(s2), 332. doi:10.1016/S0735-1097(02)81492-9 https://doi.org/10.1016/S0735-1097(02)81492-9
  6. Self, W. H., Mattu, A., Martin, M., Holstege, C., Preuss, J., & Brady, W. J. (2006). Body surface mapping in the ED evaluation of the patient with chest pain: use of the 80-lead electrocardiogram system. The American Journal of Emergency Medicine, 24(1), 87-112. doi:10.1016/j.ajem.2005.04.008 https://doi.org/10.1016/j.ajem.2005.04.008
  7. Sobieszczanska, M., Jaqielski, J., Nowak, B., Pilecki, W., & Kalka, D. (2007). Appraisal of BSPM obtained from the limited lead system. The Anatolian Journal of Cardiology, 7, 11-13.
  8. Kang, D., Cho, H. K., Song, H. Y., Cho, H. S., Lee, J. H., Lee, K. H., Koo, S. M., Lee, Y. J., & Lee, J. W. (2008). A study on a prototype of ECG-sensing clothing based on textile electrode for lifestyle monitoring. Korean Journal of the Science of Emotion and Sensibility, 11(3), 419-426.
  9. Song, H. Y., Lee, J. H., Kang, D., Cho, H., Cho, H. S., Lee, J. W., & Lee, Y. J. (2010). Textile electrodes of jacquard woven fabrics for biosignal measurement. The Journal of the Textile Institute, 101(8), 758-770. doi:10.1080/00405000903442086 https://doi.org/10.1080/00405000903442086
  10. Tysler, M., Kneppo, P., Turzová M., Svehlíová J., Karas, S., Filipová, E., Háa, K., & Filipová S. (2007). Noninvasive assessment of local myocardium repolarization changes using high resolution surface ECG mapping. Physiological Research, 56, 133-141.
  11. Jeong, Y. H., & Yang, Y. M. (2012). Development of tight-fitting upper clothing for measuring ECG -A focus on weft reduction rate and subjective assessment-. Journal of the Korean Society of Clothing and Textiles, 36(11), 1174-1185. doi:10.5850/JKSCT.2012.36.11.1174 https://doi.org/10.5850/JKSCT.2012.36.11.1174
  12. Koo, H. R., Lee, Y. J., Gi, S., Khang, S., Lee, J. H., Lee, J. H., Lim, M. G., Park, H. J., & Lee, J. W. (2014). The effect of textile-based inductive coil sensor positions for heart rate monitoring. Journal of Medical Systems, 38(2), 1-12. doi:10.1007/s10916-013-0002-0 https://doi.org/10.1007/s10916-013-0001-1
  13. Koo, H. R., Lee, Y. J., Gi, S., Lee, S. P., Kim, K. N., Kang, S. J., Lee, J. W., & Lee, J. H. (2015). Effect of module design for a garment-type heart activity monitoring wearable system based on non-contact type sensing. Journal of the Korean Society of Clothing and Textiles, 39(3), 369-378. doi:10.5850/JKSCT.2015.39.3.369 https://doi.org/10.5850/JKSCT.2015.39.3.369
  14. Koo, S. M. (2008). A study on the design of re-modularized smart clothing for ECG-sensing. Unpublished master’s thesis, Yonsei University, Seoul.
  15. Cho, H. K., Song, H. Y., Cho, H. S., Goo, S. M., & Lee, J. H. (2010). A study on the design of functional clothing for vital sign monitoring - Based on ECG sensing clothing. Korean Journal of the Science of Emotion and Sensibility, 13(3), 467-474.
  16. Lee, Y. J. (2010). Development of textile electrode measuring system for biopotential signals. Unpublished master’s thesis, Kunkook University, Chungjoo.
  17. Min, S. D., Yun, Y. H., Lee, H. S., Shin, H. S., Cho, H. K., Hwang, S. C., & Lee, M. H. (2010). Respiration measurement system using textile capacitive pressure sensor. The Transactions of the Korean Institute of Electrical Engineers P, 59(1), 58-63.
  18. Cho, H. K., & Lee, J. H. (2015b). A study on the optimal positions of ECG electrodes in a garment for the design of ECG-monitoring clothing for male. Journal of Medical Systems, 39(9), 1-14. doi:10.1007/s10916-015-0279-2 https://doi.org/10.1007/s10916-014-0182-2
  19. Cömert, A., Honkala, M., & Hyttinen, J. (2013). Effect of pressure and padding on motion artifact of textile electrodes. Biomedical Engineering Online, 12(1), 26. doi:10.1186/1475-925X-12-26 https://doi.org/10.1186/1475-925X-12-26
  20. Finlay, D. D., Nugent, C. D., Donnelly, M. P., McCullagh, P. J., & Black, N. D. (2008). Optimal electrocardiographic lead systems: practical scenarios in smart clothing and wearable health systems. Information Technology in Biomedicine, IEEE Transactions on, 12(4), 433-441. doi:10.1109/TITB.2007.896882. https://doi.org/10.1109/TITB.2007.896882
  21. Fletcher, G. F., Balady, G. J., Amsterdam, E. A., Chaitman, B., Eckel, R., Fleg, J., Froelicher, V. F., Leon, A. S., Pina, I. L., & Bazzarre, T. (2001). Exercise standards for testing and training a statement for healthcare professionals, the American heart association. Circulation, 104(14), 1694-1740. doi:10.1161/hc3901.095960 https://doi.org/10.1161/hc3901.095960
  22. Jang, S. E. (2006). Effect of fabric elasticity and body movement on performance of electrocardiogram signal monitoring clothing. Unpublished master’s thesis, Yonsei University, Seoul.
  23. Jeong, Y. H., Kim, S. H., & Yang, Y. M. (2010). Development of tight-fitting garments with a portable ECG monitor to measure vital signs. Journal of the Korean Society of Clothing and Textiles, 34(1), 112-125. doi:10.5850/JKSCT.2010.34.1.112 https://doi.org/10.5850/JKSCT.2010.34.1.112
  24. Cho, H. K., & Cho, S. W. (2015a). A study of sensing location for ECG monitoring based on the skin change rate. Fashion & Textile Research Journal, 17(5), 844-893. doi:10.5805/SFTI.2015.17.5.844 https://doi.org/10.5805/SFTI.2015.17.5.844