Label-free NanoBio Imaging for New Biology and Medical Science

DOI QR코드

DOI QR Code

Moon, Dae Won

  • 투고 : 2015.10.06
  • 심사 : 2015.10.20
  • 발행 : 2015.11.30

초록

We have been developing a new label-free nanobio imaging platform using non-linear optics such as Coherent Anti-Stokes Raman Spectroscopy (CARS) and ion beam techniques based on sputtering and scattering such as Secondary Ion Mass Spectrometry (SIMS) and Medium Energy Ion Scattering Spectroscopy (MEIS), which have been widely used for atomic and molecular level analysis of semiconductors and nanomaterials. To apply techniques developed for semiconductors and nanomaterials for biomedical applications, the convergence of nano-analysis and biology were tried. Our activities on label-free nanobio imaging during the last decade are summarized in this review about non-linear optical 3D imaging, ellipsometric interface imaging, SIMS imaging, and TOF-MEIS nano analysis for cardiovascular tissues, collagen thin films, peptides on microarray, nanoparticles, and cell adhesion studies and finally the present snapshot of nanobio imaging and the future prospect are described.

키워드

Label-free nanobio imaging;Cells and tissues;CARS;SPRIE;SIMS;TOF-MEIS

참고문헌

  1. A. H. Coons, H. J. Creech, R. N. Jones, and E. Berliner, J. Immunol. 45, 159 (1942).
  2. J. A. Ramos-Vara, Vet. Pathol. 42(4), 405 (2005). https://doi.org/10.1354/vp.42-4-405
  3. J. X. Cheng, Appl. Spectrosc. 61(9), 197 (2007). https://doi.org/10.1366/000370207781746044
  4. C. Bich, D. Touboul, and A. Brunelle, Mass Spectrom. Rev. 33, 442 (2014). https://doi.org/10.1002/mas.21399
  5. J. F. Van der Veen, Surf. Sci. Rep. 5, 199 (1985). https://doi.org/10.1016/0167-5729(85)90001-9
  6. A. Zumbusch, G. R. Holtom, X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999). https://doi.org/10.1103/PhysRevLett.82.4142
  7. T. Hellerer, C. Axang, C. Brackmann, P. Hillertz, M. Pilon, A. Enejder, Proc. Natl. Acad. Sci. USA 104, 14658 (2007).
  8. S. H. Kim, E. S. Lee, J. Y. Lee, E. S. Lee, B. S. Lee, J. E. Park ,and D. W. Moon, Circ. Res. 106, 1332 (2010). https://doi.org/10.1161/CIRCRESAHA.109.208678
  9. E. H. Danen,, and A. Sonnenberg, J. Pathol. 200, 471 (2003). https://doi.org/10.1002/path.1416
  10. A. W. Peterson, M. Halter, A. L. Plant, BMC Cell Biol. 10:16 (2009). https://doi.org/10.1186/1471-2121-10-16
  11. S. H. Kim, W. Chegal, J. S. Doh, H. M. Cho, and D. W. Moon, Biophys. J. 100, 1819 (2011). https://doi.org/10.1016/j.bpj.2011.01.033
  12. M. K. Passarelli, N. Winograd, Biochimica et Biophysica Acta 1811, 9760 (2011).
  13. E. S. Lee, H. K. Shon, T. G. Lee, S. H. Kim, D. W. Moon, Atherosclerosis 226, 378 (2013). https://doi.org/10.1016/j.atherosclerosis.2012.11.003
  14. Y. J. Park, G. J. Choi, S. H. Kim, J. H Hahn, T. G. Lee, W. J. Lee, D. W. Moon, Acta Biomater. 8, 3381 (2012). https://doi.org/10.1016/j.actbio.2012.05.029
  15. Y. P. Kim, E. K. Oh, Y. H. Oh, D. W. Moon, T. G. Lee, and H. S. Kim, Angew. Chem. Int. Edit. 46(36), 6816 (2007). https://doi.org/10.1002/anie.200701418
  16. Y. P. Kim, S. K. Choi, H. K. Kim, D. W. Moon, Appl. Phys. Lett. 71, 3504 (1997). https://doi.org/10.1063/1.120373
  17. J. Kuo, M.-W. Chu, C. H. Chen, L. V. Goncharova, E. Garfunkel, T. Gustafsson, Appl. Phys. Lett. 87, 251902 (2008)
  18. K. S. Yu, D. W. Moon, Vacuum Magazine, 2(2), 17 (2015)
  19. M. A. Sortica, P. L. Grande, G. Machado, L. J. Miotti, Appl. Phys. 106, 114320 (2009) https://doi.org/10.1063/1.3266139
  20. K. W. Jung, H. U. Yu, W. J. Min, K. S. Yu, M. A. Sortica, P. L. Grande, and D. W. Moon, Anal. Chem. 86, 1091 (2014). https://doi.org/10.1021/ac402753j