Chemical Vapor Deposition Using Ethylene Gas toward Low Temperature Growth of Single-Walled Carbon Nanotubes

  • Jo, Sung-Il ;
  • Jeong, Goo-Hwan
  • Received : 2015.10.23
  • Accepted : 2015.11.09
  • Published : 2015.11.30


We demonstrate the growth of single-walled carbon nanotubes (SWNTs) using ethylene-based chemical vapor deposition (CVD) and ferritin-induced catalytic particles toward growth temperature reduction. We first optimized the gas composition of $H_2$ and $C_2H_4$ at 500 and 30 sccm, respectively. On a planar $SiO_2$ substrate, high density SWNTs were grown at a minimum temperature of $760^{\circ}C$. In the case of growth using nanoporous templates, many suspended SWNTs were also observed from the samples grown at $760^{\circ}C$; low values of $I_D/I_G$ in the Raman spectra were also obtained. This means that the temperature of $760^{\circ}C$ is sufficient for SWNT growth in ethylene-based CVD and that ethylene is more effective that methane for low temperature growth. Our results provide a recipe for low temperature growth of SWNT; such growth is crucial for SWNT-based applications.


Ethylene;Chemical vapor deposition;Single-walled carbon nanotube;Low-temperature growth;Zeolite


  1. S. Iijima and T. Ichihashi, Nature 363, 603 (1993).
  2. S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, and C. Dekker, Nature 386, 474 (1997).
  3. M. F. L. D. Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart, Science 339, 535 (2013).
  4. M. M. Shulaker, G. Hills, N. Patil, H. Wei, H. Y. Chen, H. S. P. Wong, and S. Mitra, Nature 501, 526 (2013).
  5. H. Wang, L. Wei, F. Ren, Q. Wang, L. D. Pfefferle, G. L. Haller, and Y. Chen, ACS Nano 7, 614 (2013).
  6. F. Yang, X. Wang, D. Zhang, J. Yang, D. Luo, Z. Xu, J. Wei, J. Q. Wang, Z. Xu, F. Peng, X. Li, R. Li, Y. Li, M. Li, X. Bai, F. Ding, and Y. Li, Nature 510, 522 (2014).
  7. S. Zhang, L. Tong, Y. Hu, L. Kang, and J. Zhang, J. Am. Chem. Soc. 137, 8904 (2015).
  8. Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, and H. Dai, J. Phys. Chem. B 105, 11424 (2001).
  9. G. H. Jeong, A. Yamazaki, S. Suzuki, H. Yoshimura, Y. Kobayashi, and Y. Homma, J. Am. Chem. Soc. 127, 8238 (2005).
  10. G. H. Jeong, S. Suzuki, Y. Kobayashi, A. Yamazaki, H. Yoshimura, and Y. Homma, J. Appl. Phys. 98, 124311 (2005).
  11. G. H. Jeong, A. Yamazaki, S. Suzuki, Y. Kobayashi, and Y. Homma, Chem. Phys. Lett. 422, 83 (2006).
  12. G. H. Jeong, S. Suzuki, Y. Kobayashi, A. Yamazaki, H. Yoshimura, and Y. Homma, Appl. Phys. Lett. 90, 043108 (2007).
  13. J. J. Kim, B. J. Lee, S. H. Lee, and G. H. Jeong, Nanotechnology 23, 105607 (2012).
  14. D. Takagi, Y. Homma, H, Hibino, S. Suzuki, and Y. Kobayashi, Nano Lett. 6, 2642 (2006).
  15. S. Bhaviripudi, E. Mile, S. A. Steiner III, A. T. Zare, M. S. Dresselhaus, A. M. Belcher, and J. Kong, J. Am. Chem. Soc. 129, 1516 (2007).
  16. Z. Ghorannevis, T. Kato, T. Kaneko, and R. Hatakeyama, J. Am. Chem. Soc. 132, 9570 (2010).
  17. S. H. Lee and G. H. Jeong, Electron Mater. Lett. 8, 5 (2012).
  18. K. Hernadi, A. Fonseca, J. B. Nagy, D. Bernaerts, A. Fudala, and A. A. Lucas, Zeolites 17, 416 (1996).
  19. T. Kato, G. H. Jeong, T. Hirata, R. Hatakeyama, K. Tohji, and K. Motomiya, Chem. Phys. Lett. 381, 422 (2003).
  20. T. Hiraoka, T. Kawakubo, J. Kimura, R. Taniguchi, A. Okamoto, T. Okazaki, T. Sugai, Y. Ozeki, M. Yoshikawa, and H. Shinohara, Chem. Phys. Lett. 382, 679 (2003).
  21. T. Moteki, Y. Murakami, S. Noda, S. Maruyama, and T. Okubo, J. Phys. Chem. C 115, 24231 (2011).
  22. S. Lim, D. Ciuparu, C. Pak, F. Dobek, Y. Chen, D. Harding, L. Pfefferle, and G. Haller, J. Phys. Chem. B 107, 11048 (2003).
  23. P. B. Amama, S. Lim, D. Ciuparu, Y. Yang, L. Pfefferle, and G. L. Haller, J. Phys. Chem. B 109, 2645 (2005).
  24. P. Ramesh, T. Okazaki, R. Taniguchi, J. Kimura, T. Sugai, K. Sato, Y. Ozeki, and H. Shinohara, J. Phys. Chem. B 109, 1141 (2005).
  25. M. He, H. Jiang, B. Liu, P. V. Fedotov, A. I. Chernov, E. D. Obraztsova, F. Cavalca, J. B. Wagner, T. W. Hansen, I. V. Anoshkin, E. A. Obraztsova, A. V. Belkin, E. Sairanen, A. G. Nasibulin, J. Lehtonen, and E. I. Kauppinen, Scientific Report 3, 1460 (2013).
  26. E. H. Kwak, K. B. Yoon, and G. H. Jeong, Curr. Appl. Phys. 14, 1633 (2014).
  27. J. K. Park, Y. H. Ahn, J. Y. Park, S. Lee, and K. H. Park, Nanotechnology 21, 115706 (2010).
  28. Y. Homma, S. Suzuki, Y. Kobayashi, M. Nagase, and D. Takagi, Appl. Phys. Lett. 84, 1750 (2004).
  29. A. Jorio, R. Satio, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. Lett. 86, 1118 (2001).
  30. ]J. C. Meyer, M. Paillet, T. Michel, A. Moreac, A. Neumann, G. S. Duesberg, S. Roth, and J. L. Sauvajol, Phys. Rev. Lett. 95, 217401 (2005).


Grant : 생체소자용 나노융합소재 특화전문인재 양성사업단