Secondary Electron Emission of ZnO Films



Choi, Jinsung;Lee, Sung Kwang;Choi, Joon Ho;Choi, Eun Ha;Jung, Ranju;Kim, Yunki

  • Received : 2015.10.23
  • Accepted : 2015.11.06
  • Published : 2015.11.30


We investigated secondary electron emission characteristics of ZnO thin films prepared by pulsed laser deposition method with respect to the ambient oxygen pressure and the substrate temperature during the deposition. X-ray diffraction, UV-Vis spectrometry, atomic force microscopy, and ${\gamma}$-FIB were used to examine the structural, optical transmission, surface morphology, and secondary electron emission properties of the films, respectively. The secondary electron emission coefficient of the ZnO films increases as the O/Zn ratio of the films increases which was thought to result from either the ambient oxygen pressure increase or the substrate temperature decrease and as the grain size of the films decreases. It was confirmed that ZnO has better secondary electron emission characteristics than those of MgO, which is currently widely used as a material for PDP protecting layers.


ZnO;Secondary electron emission;PLD;${\gamma}$-FIB


  1. M. O. Aboelfotoh, IEEE Trans. Electron Devices ED-29(2) 247 (1982).
  2. Tsutae Shinoda, Heiju Uchiike, and Shizuo Andoh, IEEE Trans. Electron Devices ED-26(8) 1163 (1979).
  3. Suk Joo Bae, Seong-Joon Kim, Man Soo Kim, Bae Jin Lee, and Chang Wook Kang, IEEE Trans. Reliability 57(2) 222 (2008).
  4. Sang Jik Kwon, Yong Jae Kim, and Seong Eui Lee, Jpn. J. Appl. Phys. Vol. 45(11) 8709 (2006).
  5. Jae Hwan Eun, Jung Heon Lee, Soo Gil Kim, Myung Yoon Um, Sun Young Park, and Hyeong Joon Kim Thin Solid Films 435 199 (2003).
  6. H. Uchiike, K. Sekiya, T. Hashimoto, T. Shinoda, and Y. Fukushima, IEEE Trans. Electron Devices ED-30, 1735 (1983).
  7. S.H. Yoon, J.S. Kim, and Y.S. Kim, Curr. Appl. Phys. 6S1, e154 (2006).
  8. E. M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H.-C. Semmelhack, K.-H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, and M. Grundmann, Appl. Phys. Lett. 82, 3901 (2003).
  9. J. L. Zhao, X. M. Li, J. M. Bian, W. D. Yu, and X. D. Gao, J. Cryst. Growth 276, 507 (2005).
  10. Y. Lim, J. S. Oh, B. D. Ko, J. W. Cho, S. O. Kang, G. Cho, H. S. Uhm, and E. H. Choi, J. Appl. Phys. 94, 764 (2003).
  11. O. Dulub, L. A. Boatner, and U. Dedbold, Surf. Sci. 519, 201 (2002).
  12. E. S. Jung, J. Y. Lee, H. S. Kim, and N. W. Jang, J. Korean Phys.Soc. 47, S480 (2005).
  13. S. S. Shariffudin, M. Salina, and S. H. Herman, and M. Rusop, Trans. Electr. Electron. Mater. 13(2) 102 (2012).
  14. Jin-Cherng Hsu, Yung-Hsin Lin, Paul W. Wang, and Yu-Yun Chen, Appl. Opt. 51(9) 1209 (2012).
  15. K. J. Lethy, D. Beena, R. Vinodkumar, V. P. Mahadevan Pillai, V. Ganesan, V. Sathe, and D. M. Phase, Appl. Phys. A 91, 637 (2008).
  16. N. Croitoru, A. Seidman, and K. Yassin, Appl. Phys. 57, 102 (1985).
  17. N. Croitoru, A. Seidman, and K. Yassin, Phys. Scripta. 37, 555 (1988).
  18. L. M. Kishinevsky, Radiat. Eff. 19, 23 (1973).

Cited by

  1. 1. Enhancement in optical characteristics of c-axis-oriented radio frequency–sputtered ZnO thin films through growth ambient and annealing temperature optimization vol.66, 2017, doi:10.5757/ASCT.2015.24.6.273


Supported by : Kwangwoon University