DOI QR코드

DOI QR Code

MicroRNA-124 rs531564 Polymorphism and Cancer Risk: A Meta-analysis

  • Li, Wen-Jing (Medical Research Center, the Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital) ;
  • Wang, Yong (Medical Research Center, the Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital) ;
  • Gong, Yu (Medical Research Center, the Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital) ;
  • Tu, Chao (Medical Research Center, the Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital) ;
  • Feng, Tong-Bao (Medical Research Center, the Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital) ;
  • Qi, Chun-Jian (Medical Research Center, the Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital)
  • Published : 2015.12.03

Abstract

Several studies reported there was a polymorphism (rs531564 C > G) in miR-124 gene. To investigate the MiR-124 rs531564 polymorphism and cancer risk. We conducted a literature search of the Medline, Embase and Wangfang Medicine databases to identify all relevant studies for this meta-analysis. We determined that the miR-124 rs531564 polymorphism was significantly associated with decreased risks of cancers in the allelic model (G vs C, OR=0.71, 95% CI=0.53-0.94, P=0.02), homozygote model (GG vs CC, OR=0.42, 95% CI=0.26-0.66, P=0.0002), dominant model (GG/GC vs CC, OR=0.71, 95% CI=0.51-0.98, P=0.04) and recessive model (GG vs GC/CC, OR=0.43, 95% CI=0.27-0.69, P=0.0004). In an analysis stratified by cervical cancer group, significant associations were observed in the allelic model (G vs C, OR=0.46, 95% CI=0.32-0.66, P<0.0001), and dominant model (GG/GC vs CC, OR=0.45, 95% CI=0.3-0.66, P<0.0001). Subgroup analysis also revealed a decreased risk for esophageal squamous cell carcinoma in the homozygote model (GG vs CC, OR=0.45, 95% CI=0.27-0.75, P=0.002) and recessive model (GG vs GC/CC, OR=0.46, 95% CI=0.28-0.75, P=0.002). This meta-analysis suggests that the miR-124 rs531564 C > G polymorphism is an important risk factor for cancers among the Chinese population.

Keywords

miR-124;rs531564;polymorphism;cancer risk;meta-analysis

Acknowledgement

Supported by : National Natural Science Foundation of China, Natural Science Foundation of Jiangsu Province, Changzhou Health Bureau

References

  1. Ahn DH, Rah H, Choi YK, et al (2013). Association of the miR- 146aC>G, miR-149T>C, miR-196a2T>C, and miR-499A>G polymorphisms with gastric cancer risk and survival in the Korean population. Mol Carcinog, 52, 39-51.
  2. Ambros V (2004). The functions of animal microRNAs. Nature, 431, 350-5. https://doi.org/10.1038/nature02871
  3. Bartel DP (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136, 215-33. https://doi.org/10.1016/j.cell.2009.01.002
  4. Calin GA, Croce CM (2006). MicroRNA signatures in human cancers. Nat Rev Cancer, 6, 857-66. https://doi.org/10.1038/nrc1997
  5. DerSimonian R, Laird N (1986). Meta-analysis in clinical trials. Control Clin Trials, 7, 177-88. https://doi.org/10.1016/0197-2456(86)90046-2
  6. Dikeakos P, Theodoropoulos G, Rizos S, et al (2014). Association of the miR-146aC>G, miR-149T>C, and miR- 196a2T>C polymorphisms with gastric cancer risk and survival in the Greek population. Mol Biol Rep, 41, 1075-80. https://doi.org/10.1007/s11033-013-2953-0
  7. Ebert MS, Sharp PA (2012). Roles for microRNAs in conferring robustness to biological processes. Cell, 149, 515-24. https://doi.org/10.1016/j.cell.2012.04.005
  8. Egger M, Davey Smith G, Schneider M, et al (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315, 629-34. https://doi.org/10.1136/bmj.315.7109.629
  9. Esquela-Kerscher A, Slack FJ (2006). Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer, 6, 259-69. https://doi.org/10.1038/nrc1840
  10. Fabian MR, Sonenberg N (2012). The mechanics of miRNAmediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol, 19, 586-93. https://doi.org/10.1038/nsmb.2296
  11. Furuta M, Kozaki KI, Tanaka S, et al (2010). miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis, 31, 766-76. https://doi.org/10.1093/carcin/bgp250
  12. Gao LB, Bai P, Pan XM, et al (2011). The association between two polymorphisms in pre-miRNAs and breast cancer risk: a meta-analysis. Breast Cancer Res Treat, 125, 571-4. https://doi.org/10.1007/s10549-010-0993-x
  13. Hatley ME, Patrick DM, Garcia MR, et al (2010). Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer Cell, 18, 282-93. https://doi.org/10.1016/j.ccr.2010.08.013
  14. He L, Hannon GJ (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet, 5, 522-31. https://doi.org/10.1038/nrg1379
  15. Hu CB, Li QL, Hu JF, et al (2014). miR-124 inhibits growth and invasion of gastric cancer by targeting ROCK1. Asian Pac J Cancer Prev, 15, 6543-6. https://doi.org/10.7314/APJCP.2014.15.16.6543
  16. Jansson MD, Lund AH (2012). MicroRNA and cancer. Mol Oncol, 6, 590-610. https://doi.org/10.1016/j.molonc.2012.09.006
  17. Ji T, Zheng ZG, Wang FM, et al (2014). Differential microRNA expression by Solexa sequencing in the sera of ovarian cancer patients. Asian Pac J Cancer Prev, 15, 1739-43. https://doi.org/10.7314/APJCP.2014.15.4.1739
  18. Jinushi T, Shibayama Y, Kinoshita I, et al (2014). Low expression levels of microRNA-124-5p correlated with poor prognosis in colorectal cancer via targeting of SMC4. Cancer Med, 3, 1544-52. https://doi.org/10.1002/cam4.309
  19. Kong YW, Ferland-McCollough D, Jackson TJ, et al (2012). microRNAs in cancer management. Lancet Oncol, 13, 249-58. https://doi.org/10.1016/S1470-2045(12)70073-6
  20. Krol J, Loedige I, Filipowicz W (2010). The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet, 11, 597-610. https://doi.org/10.1038/nrg2843
  21. Kutanzi KR, Yurchenko OV, Beland FA, et al (2011). MicroRNA-mediated drug resistance in breast cancer. Clin Epigenetics, 2, 171-85. https://doi.org/10.1007/s13148-011-0040-8
  22. Li L, Luo J, Wang B, et al (2013). Microrna-124 targets flotillin-1 to regulate proliferation and migration in breast cancer. Mol Cancer, 12, 163. https://doi.org/10.1186/1476-4598-12-163
  23. Li W, Zang W, Liu P, et al (2014). MicroRNA-124 inhibits cellular proliferation and invasion by targeting Ets-1 in breast cancer. Tumour Biol, 35, 10897-904. https://doi.org/10.1007/s13277-014-2402-2
  24. Lian H, Wang L, Zhang J (2012). Increased risk of breast cancer associated with CC genotype of Has-miR-146a Rs2910164 polymorphism in Europeans. PLoS ONE, 7, 31615. https://doi.org/10.1371/journal.pone.0031615
  25. Link A, Kupcinskas J, Wex T, et al (2012). Macro-role of microRNA in gastric cancer. Dig Dis, 30, 255-67. https://doi.org/10.1159/000336919
  26. Mantel N, Haenszel W (1959). Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst, 22, 719-48.
  27. Pasquinelli AE (2012). MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet, 13, 271-82. https://doi.org/10.1038/nrg3162
  28. Peng XH, Huang HR, Lu J, et al (2014). MiR-124 suppresses tumor growth and metastasis by targeting Foxq1 in nasopharyngeal carcinoma. Mol Cancer, 13, 186. https://doi.org/10.1186/1476-4598-13-186
  29. Pritchard CC, Cheng HH, Tewari M (2012). MicroRNA profiling: approaches and considerations. Nat Rev Genet, 13, 358-69.
  30. Ruan K, Fang X, Ouyang G (2009). MicroRNAs: novel regulators in the hallmarks of human cancer. Cancer Lett, 285, 116-26. https://doi.org/10.1016/j.canlet.2009.04.031
  31. Suarez Y, Sessa WC (2009). MicroRNAs as novel regulators of angiogenesis. Circ Res, 104, 442-54. https://doi.org/10.1161/CIRCRESAHA.108.191270
  32. Tong N, Xu B, Shi D, et al (2014). Hsa-miR-196a2 polymorphism increases the risk of acute lymphoblastic leukemia in Chinese children. Mutat Res Fundam Mol Mech Mutagen, 759, 16-21. https://doi.org/10.1016/j.mrfmmm.2013.11.004
  33. Wan HY, Li QQ, Zhang Y, et al (2014). MiR-124 represses vasculogenic mimicry and cell motility by targeting amotL1 in cervical cancer cells. Cancer Lett, 355, 148-58. https://doi.org/10.1016/j.canlet.2014.09.005
  34. Wang J, Bi J, Liu X, et al (2012). Has-miR-146a polymorphism (rs2910164) and cancer risk: a meta-analysis of 19 casecontrol studies. Mol Biol Rep, 39, 4571-9. https://doi.org/10.1007/s11033-011-1247-7
  35. Woolf B (1955). On estimating the relation between blood group and disease. Ann Hum Genet, 19, 251-3. https://doi.org/10.1111/j.1469-1809.1955.tb01348.x
  36. Wu H, Zhang J (2014). miR-124 rs531564 polymorphism influences genetic susceptibility to cervical cancer. Int J Clin Exp Med, 7, 5847-51.
  37. Xiong X, Cheng J, Liu X, et al (2014). [Correlation analysis between miR-124 rs531564 polymorphisms and susceptibility to cervical cancer]. Nan Fang Yi Ke Da Xue Xue Bao, 34, 210-3.
  38. Yin J, Wang X, Zheng L, et al (2013). Hsa-miR-34b/c rs4938723 T>C and hsa-miR-423 rs6505162 C>A polymorphisms are associated with the risk of esophageal cancer in a Chinese population. PLoS ONE, 8, 80570. https://doi.org/10.1371/journal.pone.0080570
  39. Zhang J, Huang X, Xiao J, et al (2014a). Pri-miR-124 rs531564 and pri-miR-34b/c rs4938723 polymorphisms are associated with decreased risk of esophageal squamous cell carcinoma in Chinese populations. PLoS ONE, 9, 100055. https://doi.org/10.1371/journal.pone.0100055
  40. Zhang T, Wang J, Zhai X, et al (2014b). MiR-124 retards bladder cancer growth by directly targeting CDK4. Acta Biochim Biophys Sin (Shanghai), 46, 1072-9. https://doi.org/10.1093/abbs/gmu105

Cited by

  1. A meta-analysis: Is there any association between MiR-608 rs4919510 polymorphism and breast cancer risks? vol.12, pp.8, 2017, https://doi.org/10.1371/journal.pone.0183012
  2. Polymorphisms in MIR122, MIR196A2, and MIR124A Genes are Associated with Clinical Phenotypes in Inflammatory Bowel Diseases vol.21, pp.1, 2017, https://doi.org/10.1007/s40291-016-0240-1
  3. Validation of microRNA pathway polymorphisms in esophageal adenocarcinoma survival vol.6, pp.2, 2017, https://doi.org/10.1002/cam4.989
  4. Involving the microRNA Targetome in Esophageal-Cancer Development and Behavior vol.10, pp.10, 2018, https://doi.org/10.3390/cancers10100381