DOI QR코드

DOI QR Code

Effect of the Control of Bowing in Free-standing GaN by Mechanical Polishing

Freestanding GaN 기판의 Ga-polar 면에 기계적 연마 방법을 적용한 Bow 제어 및 그 특성 연구

  • Received : 2015.10.30
  • Accepted : 2015.11.24
  • Published : 2015.12.01

Abstract

In this paper, we have studied the effect of mechanical polishing to Ga-polar face for reducing the wafer bowing and strain in free-standing GaN. After the mechanical polishing to Ga-polar face, the bowing of the free-standing GaN substrate significantly decreased with increasing the size of diamond slurry, and eventually changed the bowing direction from concave to convex. Furthermore, the full width at half maximum (FWHM) of high-resolution X-ray diffraction (HR-XRD) were decreased, especially the FWHM of (1 0 2) reflection for $1.0{\mu}m$ size of diamond slurry was significantly decreased from 630 to 203 arcsec. In the case, we confirmed that the compressive strain in Ga-polar face was fully released by Raman measurement.

Keywords

Bowing;Freestanding GaN;Mechanical polishing;Refractive index

References

  1. S. Nakamura, T. Mukai, and M. Senon, Appl. Phys. Lett., 64, 1687 (1994). [DOI: http://dx.doi.org/10.1063/1.111832] https://doi.org/10.1063/1.111832
  2. C. D. Thurmond and R. A. Rogan, J. Electrochem. Soc., 119, 622 (1972). [DOI: http://dx.doi.org/10.1149/1.2404274] https://doi.org/10.1149/1.2404274
  3. C. R. Miskys, M. K. Kelly, O. Ambacher, and M. Stutzmann, Phys. Stat. Sol. C, 0, 1627 (2003). [DOI: http://dx.doi.org/10.1002/pssc.200303140] https://doi.org/10.1002/pssc.200303140
  4. M. Mynbaeva, A. Sitnikova, A. Tregubova, and K. Mynbaev, J. Cryst. Growth, 303, 472 (2007). [DOI: http://dx.doi.org/10.1016/j.jcrysgro.2006.12.041] https://doi.org/10.1016/j.jcrysgro.2006.12.041
  5. E. M. Goldys, T. Paskova, I. G. Ivanov, B. Arnaudov, and B. Monemar, Appl. Phys. Lett., 73, 3583 (1998). [DOI: http://dx.doi.org/10.1063/1.122831] https://doi.org/10.1063/1.122831
  6. B. Monemar, H. Larsson, C. Hemmingsson, I. G. Ivanov, and D. Gogova, J. Cryst. Growth, 281, 17 (2005). [DOI: http://dx.doi.org/10.1016/j.jcrysgro.2005.03.040] https://doi.org/10.1016/j.jcrysgro.2005.03.040
  7. D. L. Rousseau and J. Raman, Spectrosc., 10, 94 (1981). [DOI: http://dx.doi.org/10.1002/jrs.1250100116] https://doi.org/10.1002/jrs.1250100116
  8. P. Perlin, C. Jauberbie-Carillon, J. P. Itie, A. S. Miguel, I. Grzegory, and A. Polian, Phys. Rev. B, 45, 83 (1992). [DOI: http://dx.doi.org/10.1103/PhysRevB.45.83] https://doi.org/10.1103/PhysRevB.45.83
  9. C. Kisielowski, J. Krueger, S. Ravimov, T. Suski, J. W. Ager III, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis, Phys. Rev. B, 54, 17745 (1996). [DOI: http://dx.doi.org/10.1103/PhysRevB.54.17745] https://doi.org/10.1103/PhysRevB.54.17745
  10. M. Seon, T. Prokfyeva, M. Holtz, S. A. Nikishin, N. N. Fleev, and H. Temkin, Appl. Phys. Lett., 76, 1842 (2000). [DOI: http://dx.doi.org/10.1063/1.126186] https://doi.org/10.1063/1.126186
  11. T. Prokofyeva, M. Seon, J. Vanbuskirk, M. Holtz, S. A. Nikishin, N. N. Fleev, H. Temkin, and S. Zollner, Phys. Lett., 76, 1842 (2000).
  12. Y. J. Choi, H. K Oh, J. G. Kim, H. H. Hwang, H. Y. Lee, W. J. Lee, B. C. Shin, and J. H. Hwang, Phys. Status Solidi, C, 7, 1770 (2010). [DOI: http://dx.doi.org/10.1002/pssc.200983632] https://doi.org/10.1002/pssc.200983632
  13. C. Nootz, A. Schulte, and L. Chernyak, Appl. Phys. Lett., 80, 1355 (2002). [DOI: http://dx.doi.org/10.1063/1.1449523] https://doi.org/10.1063/1.1449523

Acknowledgement

Supported by : 산업통상자원부