The Effect of Packing Density on the Warpage Behavior of Ni-Zn-Cu Ferrite Sheets

Ni-Zn-Cu계 페라이트 시트에서 충진 밀도에 따른 시트 휨 현상

  • Received : 2015.11.04
  • Accepted : 2015.11.16
  • Published : 2015.12.01


It is necessary for ferrite sheets to be fabricated with high packing density for excellent electrical properties and high strength. In this study, the relationship between the warpage and the packing density of ferrite green sheet, was investigated with amount variation of organic additives. With 0.4 wt% of dispersant, the packing density was about 48% and warpage appeared 0.5~1.3 mm high. With 1.4 wt% of dispersant, the packing density increased up to 57% and warpage appeared 0.8~2.1 mm high. With high packing density, warpage appeared along the edges of specimen, while with low packing density, deformation appeared over whole specimen inhomogeneously. It is thought that inhomogeneous deformation after sintering came from the inhomogeneity in green sheet prepared with badly dispersed slurry. With good homogeneity in green sheet from well-dispersed slurry, isotropic shrinkage is thought to have occurred along the distance from center to edges of specimen during sintering.


Ni-Zn-Cu ferrite;Dispersion;Green sheet;Packing density;Warpage


  1. R. E. Mistler and E. R. Twiname, Tape Casting: Theory and Practice (John Wiley & Sons, New York, 2000) p. 1-4.
  2. J. H. Feng and F. Dogan, J. Am. Ceram. Soc., 83, 1681 (2000). [DOI:]
  3. H. Verweij and W.H.M. Bruggink, J. Am. Ceram. Soc., 73, 226 (1990). [DOI:]
  4. Y. T. Chou, Y. T. Ko, and M. F. Yan, J. Am. Ceram. Soc., 70, C-280 (1987). [DOI:]
  5. R. M. German, Metall. Trans. A, 23A, 1455 (1992). [DOI:]
  6. D. J. Shaw, Introduction to Colloid and Surface Chemistry (Batterworths, Boston, Massachusetts, 1980) p. 5.
  7. S. K. Lee, S. S. Ryu, and D. H. Yoon, J. Electroceram., 18, 1 (2007). [DOI:]
  8. M. H. Lee, I. S. Park, D. J. Kim, and D. Y. Lee, J. Kor. Ceram. Soc., 37, 824 (2000).
  9. S. Nayak, B. P. Singh, L. Besra, T. K. Chongdar, N. M. Gokhale, and S. Bhattacharjee, J. Am. Ceram. Soc., 94, 3742 (2011). [DOI:]
  10. C. Khamkasem and A. Chaijaruwanich, Ferroelectrics, 455, 129 (2013). [DOI:]
  11. J. H. You, D. H. Yeo, J. S. Lee, H. S. Shin, H. G. Yoon, and J. H. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 19, 1112 (2006).
  12. M. D. Sacks and G. W. Scheiffele, Multilayer Ceramic Devices, Advances in Ceramics, 19 (eds. J. B. Blum and W. R. Cannon) (American Ceramic Society, Westerwille, Ohio, 1986) p. 175.
  13. M. D. Sacks, C. S. Khadilkar, G. W. Scheiffele, A. V. Shenoy, J. H. Dow, and R. S. Sheu, Ceramic Powder Science, Advances in Ceramics, 21 (eds G. L. Messing, K. S. Mazdiyasni, J. W. McCauley and R. A. Haber) (American Ceramic Society, Westerwille, Ohio, 1987) p. 495.
  14. J. H. Jean, S. F. Yeh, and C. J. Chen, J. Mater. Res., 12, 1062 (1997). [DOI:]
  15. V. L. Richards, J. Amer. Ceram. Soc., 72, 325 (1989). [DOI:]
  16. P. M. Raj, A. Odulena, and W. R. Cannon, Acta Materialia, 50, 2559 (2002). [DOI:]
  17. A. Shui, N. Uchida, and K. Uematsu, Powder Technol., 127, 9 (2002). [DOI:]
  18. S. T. Lin and R. M. German, J. Am. Ceram. Soc., 71, C-432 (1988). [DOI:]
  19. R. A. Gregg and F. N. Rhines, Metall. Trans., 4, 1365 (1973). [DOI:]
  20. S. H. Lee, G. L. Messing, and M. Awano, J. Am. Ceram. Soc., 91, 421 (2008). [DOI:]