ITO Nanowires-embedded Transparent Metal-oxide Semiconductor Photoelectric Devices

ITO 나노와이어 기반의 투명 산화물 반도체 광전소자

  • Received : 2015.10.18
  • Accepted : 2015.11.04
  • Published : 2015.12.01


Highly optical transparent photoelectric devices were realized by using a transparent metal-oxide semiconductor heterojunction of p-type NiO and n-type ZnO. A functional template of ITO nanowires (NWs) was applied to this transparent heterojunction device to enlarge the light-reactive surface. The ITO NWs/n-ZnO/p-NiO heterojunction device provided a significant high rectification ratio of 275 with a considerably low reverse saturation current of 0.2 nA. The optical transparency was about 80% for visible wavelengths, however showed an excellent blocking UV light. The nanostructured transparent heterojunction devices were applied for UV photodetectors to show ultra fast photoresponses with a rise time of 8.3 mS and a fall time of 20 ms, respectively. We suggest this transparent and super-performing UV responser can practically applied in transparent electronics and smart window applications.


Transparent photoelectric devices;ITO nanowires;NiO;ZnO;Heterojunction


  1. A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, Thin Solid Films, 486, 38 (2005). [DOI:]
  2. C. J. Kim, S. W. Kim, J. H. Lee, J. S. Park, S. I. Kim, J. C. Park, E. H. Lee, J. C. Lee, Y. S. Park, J. H. Kim, S. T. Shin, and U. I. Chung, Appl. Phys. Lett., 95, 252103 (2009). [DOI:]
  3. H. S. Kim, M. Patel, H. K. Kim, J. Y. Kim, M. K. Kwon, and J. D. Kim, Mater. Lett, 160, 305 (2015). [DOI:]
  4. V. Craciun, J. Elders, J.G.E. Gardeniers, and I. W. Boyd, Appl. Phys. Lett., 65, 2963 (1994). [DOI:]
  5. W. I. Park, J. S. Kim, G. C. Yi, M. H. Bae, and H. J. Lee, Appl. Phys. Lett., 85, 5052 (2004). [DOI:]
  6. H. Ohta, M. Hirano, K. Nakahara, H. Maruta, T. Tanabe, M. Kamiya, T. Kamiya, and H. Hosono, Appl. Phys. Lett., 83, 1029 (2003). [DOI:]
  7. H. Ohta, M. Kamiya, T. Kamiya, M. Hirano, and H. Hosono, Thin Solid Films, 445, 317 (2003). [DOI:]
  8. H. Kim, C. M. Gilmore, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, J. Appl. Phys., 86, 6451 (1999). [DOI:]
  9. T. Karasawa and Y. Miyata, Thin Solid Films, 223, 135 (1993). [DOI:]
  10. S. Ishibashi, Y. Higuchi, Y. Ota, and K. Nakamura, J. Vac. Sci. Technol. A, 8, 1403 (1990). [DOI:]
  11. A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, and W. van Schalkwijk, Nature Materials, 4, 366 (2005). [DOI:]
  12. X. Y. Xue, Y. J. Chen, Y. G. Liu, S. L. Shi, Y. G. Wang, and T. H. Wang, Appl. Phys. Lett., 88, 201907 (2006). [DOI:]
  13. H. S. Kim, J. H. Yun, H. H. Park, M. D. Kumar, and J. D. Kim, Mater. Lett., 148, 174 (2015). [DOI:]
  14. R. K. Gupta, K. Ghosh, and P. K. Kahol, Physica E:Low-dimensional Systems and Nanostructures, 41, 614 (2009).
  15. M. Patel, H. S. Kim, and J. D. Kim, Adv. Electron. Mater., 1, 1500232 (2015).
  16. J. H. Yun, E. Lee, H. H. Park, D. W. Kim, W. A. Anderson, J. Kim, N. M. Litchinitser, J. Zeng, J. Yi, M. M. Kumar, and J. Sun, Scientific Reports, 4, 6879 (2014). [DOI:]
  17. J. Kim, J. H. Yun, H. Kim, Y. Cho, H. H. Park, M. M. D. Kumar, J. Yi, W. A. Anderson, and D. W. Kim, Scientific Reports, 5, 9256 (2015). [DOI:]


Supported by : Korea Institute of Energy Technology Evaluation and Planning