DOI QR코드

DOI QR Code

Fabrication of Transparent Conducting Thin Film with High Hardness by Wet Process

습식 공정법에 의한 고경도 투명 전도막 제조

  • Park, Jong-Guk (Optic & Display Materials Team, Korea Institute of Ceramic Engineering & Technology) ;
  • Jeon, Dae-Woo (Optic & Display Materials Team, Korea Institute of Ceramic Engineering & Technology) ;
  • Lee, Mi-Jai (Optic & Display Materials Team, Korea Institute of Ceramic Engineering & Technology) ;
  • Lim, Tea-Young (Optic & Display Materials Team, Korea Institute of Ceramic Engineering & Technology) ;
  • Hwang, Jonghee (Optic & Display Materials Team, Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Jin-Ho (Optic & Display Materials Team, Korea Institute of Ceramic Engineering & Technology)
  • 박종국 (한국세라믹기술원 광디스플레이소재팀) ;
  • 전대우 (한국세라믹기술원 광디스플레이소재팀) ;
  • 이미재 (한국세라믹기술원 광디스플레이소재팀) ;
  • 임태영 (한국세라믹기술원 광디스플레이소재팀) ;
  • 황종희 (한국세라믹기술원 광디스플레이소재팀) ;
  • 김진호 (한국세라믹기술원 광디스플레이소재팀)
  • Received : 2015.11.18
  • Accepted : 2015.11.24
  • Published : 2015.12.01

Abstract

Transparent Ag nanowire conducting thin films with high surface hardness were fabricated by bar coating method. When coating speed was changed from 35 mm/sec to 50 mm/sec, the transmittance of coated glass increased from 65.3% to 80.8% in visible light range and the surface resistance was changed from $10.1{\Omega}/sq$ to $23.3{\Omega}/sq$. The surface hardness and adhesion of thin film were 5H and 5B.

Acknowledgement

Supported by : 한국세라믹기술원

References

  1. Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, and A. F. Hebard, Science, 305, 1273 (2004). [DOI: http://dx.doi.org/10.1126/science.1101243] https://doi.org/10.1126/science.1101243
  2. L. Kim, J. S. Yu, G. H. Jung, J. Jo, J. S. Kim, J. W. Kim, S. W. Kwak, J. L. Lee, and D. Kim, Sol. Energ. Matater. Sol. Cells, 109, 142 (2013). [DOI: http://dx.doi.org/10.1016/j.solmat.2012.10.013] https://doi.org/10.1016/j.solmat.2012.10.013
  3. N. Yamamoto, H. Makino, K. Morisawa, and T. Yamamoto, J. Electrochem. Soc., 41, 29 (2012).
  4. Y. M. Chien, I. Shih, and R. Izquierdo, J. Electrochem. Soc., 35, 69 (2011).
  5. Y. H. Shin, C. K. Cho, and H. K. Kim, Thin Solid Films, 548, 641 (2013). [DOI: http://dx.doi.org/10.1016/j.tsf.2013.10.007] https://doi.org/10.1016/j.tsf.2013.10.007
  6. C. H. Liu and X. Yu, Nanoscale Research Letters, 6, 75 (2011). [DOI: http://dx.doi.org/10.1186/1556-276X-6-75] https://doi.org/10.1186/1556-276X-6-75
  7. L. Hu, H. S. Kim, J. Y. Lee, P. Peumans, and Y. Cui, ACS Nano, 4, 2599 (2010). [DOI: http://dx.doi.org/10.1021/nn1010045]
  8. N. F. Anglada, J. P. Puigdemont, J. Figueras, M. Z. Iqbal, and S. Roth, Nanoscale Res. Lett., 7, 571 (2012). [DOI: http://dx.doi.org/10.1186/1556-276X-7-571] https://doi.org/10.1186/1556-276X-7-571
  9. H. Z. Geng, K. K. Ki, P. S. Kang, S. L. Young, Y. B. Chang, and H. L. Young, J. Am. Chem. Soc., 129, 7758 (2007). [DOI: http://dx.doi.org/10.1021/ja0722224] https://doi.org/10.1021/ja0722224
  10. C. Park, S. W. Kim, Y. S. Lee, S. H. Lee, K. H. Song, and L. S. Park, J. Nanosci. Nanotechnol., 12, 5351 (2012). [DOI: http://dx.doi.org/10.1166/jnn.2012.6343] https://doi.org/10.1166/jnn.2012.6343
  11. K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, Solid State Communications, 146, 351 (2008). [DOI: http://dx.doi.org/10.1016/j.ssc.2008.02.024] https://doi.org/10.1016/j.ssc.2008.02.024
  12. S. Latil and L. Henrard, Physical Review Letters, 97, 36803 (2006). [DOI: http://dx.doi.org/10.1103/PhysRevLett.97.036803] https://doi.org/10.1103/PhysRevLett.97.036803
  13. B. D. Malhotra, A. Chaubey, and S. P. Singh, Anal. Chim. Acta, 578, 59 (2006). [DOI: http://dx.doi.org/10.1016/j.aca.2006.04.055] https://doi.org/10.1016/j.aca.2006.04.055
  14. J. Yang, J. Choi, D. Bang, E. Kim, E. K. Lim, H. Park, J. S. Suh, K. Lee, K. H. Yoo, E. K. Kim, Y. M. Huh, and S. Haam, Angew. Chem. Int. Ed., 50, 441 (2011). [DOI: http://dx.doi.org/10.1002/anie.201005075] https://doi.org/10.1002/anie.201005075
  15. R. Jackson, B. Domercq, R. Jain, B. Kippelen, and S. Graham, Advanced Functional Materials, 18, 2548 (2008). [DOI: http://dx.doi.org/10.1002/adfm.200800324] https://doi.org/10.1002/adfm.200800324
  16. J. Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, Nano Letters, 8, 689 (2008). [DOI: http://dx.doi.org/10.1021/nl073296g] https://doi.org/10.1021/nl073296g
  17. E. M. Doherty, S. De, P. E. Lyons, A. Shmeliov, P. N. Nirmalraj, V. Scardaci, J. Joimel, W. J. Blau, J. J. Boland, and J. N. Coleman, Carbon, 47, 2466 (2009). [DOI: http://dx.doi.org/10.1016/j.carbon.2009.04.040] https://doi.org/10.1016/j.carbon.2009.04.040
  18. Y. Meng, G. Xin, J. W. Nam, S. M. Cho, and H. Y. Chae, J. Nanosci. Nanotechnol., 13, 6125 (2013). [DOI: http://dx.doi.org/10.1166/jnn.2013.7651] https://doi.org/10.1166/jnn.2013.7651
  19. J. Xu, L. Zhang, and G. Chen, Electrophoresis, 34, 2017 (2013). [DOI: http://dx.doi.org/10.1002/elps.201200443] https://doi.org/10.1002/elps.201200443