DOI QR코드

DOI QR Code

The Effects of Al-substitution on Thermoelectric and Charge Transport Properties of BiCuOSe Compounds

Al 치환이 BiCuOSe의 열전 특성에 미치는 영향

An, Tae-Ho;Lim, Young Soo;Seo, Won-Seon;Park, Cheol-Hee;Park, Chan
안태호;임영수;서원선;박철희;박찬

  • Received : 2015.11.19
  • Accepted : 2015.11.24
  • Published : 2015.12.01

Abstract

The effects of Al-substitution on thermoelectric and charge transport properties of BiCuOSe compounds were investigated. The compounds were prepared by a solid-state reaction and consolidated by SPS (spark plasma sintering). In spite of the increase in the hole concentration with increasing Al amounts in BiCuOSe compound, the electrical conductivity at room temperature was kept constant due to the reduction of mobility. However, electrical conductivities of Al-substituted BiCuOSe compounds at elevated temperature (> 600 K) were higher than those of BiCuOSe, and this result was discussed in terms of it's the band gap energy. The Seebeck coefficient was drastically reduced when Al was substituted in Bi site, which indicated that the electronic structure was influenced by the Al-substitution into Bi-site.

Keywords

Thermoelectric;Charge transport;Al substitution;BiCuOSe

References

  1. D. M. Rowe, CRC Handbook of Thermoelectrics (CRC, Boca Raton, 1995). [DOI: http://dx.doi.org/10.1201/9781420049718] https://doi.org/10.1201/9781420049718
  2. H. J. Goldsmid, Thermoelectric Refrigeration (Plenum, New York, 1964). [DOI: http://dx.doi.org/10.1007/978-1-4899-5723-8] https://doi.org/10.1007/978-1-4899-5723-8
  3. T. M. Tritt, Semiconductors and Semimetals, Recent Trends in Thermoelectric Materials Research: Part One to Three (Academic, San Diego, 2001).
  4. Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen, and Z. F. Ren, Nano Lett., 8, 2580 (2008). [DOI: http://dx.doi.org/10.1021/nl8009928] https://doi.org/10.1021/nl8009928
  5. X. Yan, B. Poudel, Y. Ma, W. S. Liu, G. Joshi, H. Wang, Y. Lan, D. Wang, G. Chen, and Z. F. Ren, Nano Lett., 10, 3373 (2010). [DOI: http://dx.doi.org/10.1021/nl101156v] https://doi.org/10.1021/nl101156v
  6. J. P. Heremans, V. Jovovic1, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder, Science, 321, 554 (2008). [DOI: http://dx.doi.org/10.1126/science.1159725] https://doi.org/10.1126/science.1159725
  7. K. Biswas, J. He, I. D. Blum, C. I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, and M. G. Kanatzidis, Nature, 489, 414 (2012) [DOI: http://dx.doi.org/10.1038/nature11439] https://doi.org/10.1038/nature11439
  8. X. Shi, H. Kong, C. P. Li, C. Uher, J. Yang, J. R. Salvador, H. Wang, L. Chen, and W. Zhang, Appl. Phys. Lett., 92, 182101 (2008). [DOI: http://dx.doi.org/10.1063/1.2920210] https://doi.org/10.1063/1.2920210
  9. X. Shi, J. Yang, J. R. Salvador, M. Chi, J. Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, and L. Chen, J. Am. Chem. Soc., 133, 7837 (2011). [DOI: http://dx.doi.org/10.1021/ja111199y] https://doi.org/10.1021/ja111199y
  10. H. Ohta, K. Sugiura, and K. Koumoto, Inorganic Chemistry, 47, 8429 (2008). [DOI: http://dx.doi.org/10.1021/ic800644x] https://doi.org/10.1021/ic800644x
  11. Y. Wang, N. S. Rogado, R. J. Cava, and N. P. Ong, Nature, 423, 425 (2003). [DOI: http://dx.doi.org/10.1038/nature01639] https://doi.org/10.1038/nature01639
  12. S. Ohta, T. Nomura, H. Ohta, and K. Koumoto, J. Appl. Phys., 97, 034106 (2005). [DOI: http://dx.doi.org/10.1063/1.1847723] https://doi.org/10.1063/1.1847723
  13. M. Palazzi, C. R. Acad. Sci. Paris, 292, 789 (1981).
  14. W. J. Zhu, Y. Z. Huang, C. Dong, and Z. X. Zhao, Mater. Res. Bull., 29, 143 (1994). [DOI: http://dx.doi.org/10.1016/0025-5408(94)90134-1] https://doi.org/10.1016/0025-5408(94)90134-1
  15. B. A. Popovkin, A. M. Kusainova, V. A. Dolgikh, and L. G. Aksel’rud, Russ. J. Inorg. Chem., 43, 1471 (1998).
  16. L. D. Zhao, J. He, D. Berardan, Y. Lin, J. F. Li, C. W. Nan, and N. Dragoe, Energy. Environ. Sci., 7, 2900 (2014). [DOI: http://dx.doi.org/10.1039/C4EE00997E] https://doi.org/10.1039/C4EE00997E
  17. J. L. Lan, B. Zhan, Y. C. Liu, B. Zheng, Y. Liu, Y. H. Lin, and C. W. Nan, Appl. Phys. Lett., 102, 123905 (2013). [DOI: http://dx.doi.org/10.1063/1.4799643] https://doi.org/10.1063/1.4799643
  18. J. Li, J. Sui, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, Y. Pei, and L. D. Zhao, J. Alloy. Compd., 551, 649 (2013). [DOI: http://dx.doi.org/10.1016/j.jallcom.2012.10.160] https://doi.org/10.1016/j.jallcom.2012.10.160
  19. F. Li, T. R. Wei, F. Kang, and J. F. Li, J. Mater. Chem,. A, 1, 11942 (2013). [DOI: http://dx.doi.org/10.1039/c3ta11806a] https://doi.org/10.1039/c3ta11806a
  20. L. D. Zhao, D. Berardan, Y. L. Pei, C. Byl, L. Pinsard-Gaudart, and N. Dragoe, Appl. Phys. Lett,. 97, 092118 (2010). [DOI: http://dx.doi.org/10.1063/1.3485050] https://doi.org/10.1063/1.3485050
  21. J. Li, J. Sui, Y. Pei, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, J. He, and L. D. Zhao, Energy Environ. Sci., 5, 8543 (2012). [DOI: http://dx.doi.org/10.1039/c2ee22622g] https://doi.org/10.1039/c2ee22622g
  22. J. Sui, J. Li, J. He, Y. L. Pei, D. Berardan, H. Wu, N. Dragoe, W. Cai, and L. D. Zhao, Energy Environ. Sci., 6, 2916 (2013). [DOI: http://dx.doi.org/10.1039/c3ee41859f] https://doi.org/10.1039/c3ee41859f
  23. L. Pan, D. Berardan, L. Zhao, C. Barreteau, and N. Dragoe, Appl. Phys. Lett., 102, 023902 (2013). [DOI: http://dx.doi.org/10.1063/1.4775593] https://doi.org/10.1063/1.4775593
  24. S. D. N. Luu and P. Vaqueiro, J. Mater. Chem. A, 1, 12270 (2013). [DOI: http://dx.doi.org/10.1039/c3ta12753b] https://doi.org/10.1039/c3ta12753b
  25. J. L. Lan, Y. C. Liu, B. Zhan, Y. H. Lin, B. Zhang, X. Yuan, W. Zhang, W. Xu, and C. W. Nan, Adv. Mater., 25, 5086 (2013). [DOI: http://dx.doi.org/10.1002/adma.201301675] https://doi.org/10.1002/adma.201301675
  26. J. Li, J. Sui, Y. Pei, X. Meng, D. Berardan, N. Dragoe, W. Cai, and L.-D. Zhao, J. Mater. Chem. A, 2, 4903 (2014). [DOI: http://dx.doi.org/10.1039/c3ta14532h] https://doi.org/10.1039/c3ta14532h
  27. D. S. Lee, T. H. An, M. Jeong, H.-S. Choi, Y. S. Lim, W. S. Seo, C. H. Park, C. Park, and H. H. Park, Appl. Phys. Lett., 103, 232110 (2013).. [DOI: http://dx.doi.org/10.1063/1.4837475] https://doi.org/10.1063/1.4837475
  28. Y. Liu, L. D. Zhao, Y. Liu, J. Lan, W. Xu, F. Li, B. P. Zhang, D. Berardan, N. Dragoe, Y. H. Lin, C. W. Nan, J. F. Li, and H. Zhu, J. Am. Chem. Soc., 133, 20112 (2011). [DOI: http://dx.doi.org/10.1021/ja2091195] https://doi.org/10.1021/ja2091195
  29. Z. Li, C. Xiao, S. Fan, Y. Deng, W. Zhang, B. Ye, and Y. XIe, J. Am. Chem. Soc., 137, 6587 (2015). [DOI: http://dx.doi.org/10.1021/jacs.5b01863] https://doi.org/10.1021/jacs.5b01863
  30. Y. Liu, J. Ding, B. Xu, J. Lan, Y. Zheng, B. Zhang, Y. Lin, and C. Nan, Appl. Phys. Lett., 106, 233903 (2015). [DOI: http://dx.doi.org/10.1063/1.4922492] https://doi.org/10.1063/1.4922492
  31. C. Barreteau, D. Berardan, L. D. Zhao, and N. Dragoe, J. Mater. Chem. A, 137, 6587 (2015).
  32. Y. Liu, J. Lan , W. Xu, Y. Liu, Y. L. Pei, B. Cheng, D. B. Liu, Y. H. Lin, and L. D. Zhao, Chem. Commun., 49, 8075 (2013). [DOI: http://dx.doi.org/10.1039/c3cc44578j] https://doi.org/10.1039/c3cc44578j
  33. M. A. Green, Appl. Phys. Lett., 67, 2944 (1990).