DOI QR코드

DOI QR Code

Effect of High-Energy Ball Milling on Thermoelectric Transport Properties in CoSb3 Skutterudite

고에너지 볼 밀링이 Skutterudite계 CoSb3의 열전 및 전하 전송 특성에 미치는 영향

Nam, Woo Hyun;Meang, Eun-Ji;Lim, Young Soo;Lee, Soonil;Seo, Won-Seon;Lee, Jeong Yong
남우현;맹은지;임영수;이순일;서원선;이정용

  • Received : 2015.11.19
  • Accepted : 2015.11.24
  • Published : 2015.12.01

Abstract

In this study, we investigate the effect of high-energy ball milling on thermoelectric transport properties in double-filled $CoSb_3$ skutterudite ($In_{0.2}Yb_{0.1}Co_4Sb_{12}$). $In_{0.2}Yb_{0.1}Co_4Sb_{12}$ powders are milled using high-energy ball milling for different periods of time (0, 5, 10, and 20 min), and the milled powders are consolidated into bulk samples by spark plasma sintering. Microstructure analysis shows that the high-energy ball milled bulk samples are composed of nano- and micro-grains. Because the filling fractions are reduced in the bulk samples due to the kinetic energy of the high-energy ball milling, the carrier concentration of the bulk samples decreases with the ball milling time. Furthermore, the mobility of the bulk samples also decreases with the ball milling time due to enhanced grain boundary scattering of electrons. Reduction of electrical conductivity by ball milling has a decisive effect on thermoelectric transport in the bulk samples, power factor decreases with the ball milling time.

Keywords

Skutterudite;High-energy ball milling;Thermoelectric properties;Charge transport

References

  1. G. A. Slack, New Materials and Performance Limits for Thermoelectric Cooling (CRC Press, Boca Raton, 1995) p. 407. [DOI: http://dx.doi.org/10.1201/9781420049718.ch34] https://doi.org/10.1201/9781420049718.ch34
  2. X. Shi, J. Yang, J. R. Salvador, M. Chi, J. Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, and L. Chen, J. Am. Chem. Soc., 133, 7837 (2011). [DOI: http://dx.doi.org/10.1021/ja111199y] https://doi.org/10.1021/ja111199y
  3. H. Li, X. F. Tang, Q. J. Zhang, and C. Uher, Appl. Phys. Lett., 94, 102114 (2009). [DOI: http://dx.doi.org/10.1063/1.3099804] https://doi.org/10.1063/1.3099804
  4. J. Yang, W. Zhang, S. Q. Bai, Z. Mei, and L. D. Chen, Appl. Phys. Lett., 90, 192111 (2007). [DOI: http://dx.doi.org/10.1063/1.2737422] https://doi.org/10.1063/1.2737422
  5. B. L. Yu, X. F. Tang, Q. J. Zhang, T. X. Liu, P. F. Luo, and J. Wang, 22nd International Conference on Thermoelectrics (International Conference on Thermoelectrics, 2003) p. 101.
  6. L. Zhang, A. Grytsiv, M. Kerber, P. Rogl, E. Bauer, M. J. Zehetbauer, J. Wosik, and G. E. Nauer, J. Alloy. Compd., 29, 106 (2009). [DOI: http://dx.doi.org/10.1016/j.jallcom.2009.03.109]

Acknowledgement

Supported by : 한국연구재단