DOI QR코드

DOI QR Code

Effects of Emphasized Initial Contact Auditory Feedback Gait Training on Balance and Gait in Stroke Patients

뇌졸중 환자의 초기 접지기를 강조한 청각적-피드백 보행훈련이 균형능력과 보행기능에 미치는 영향

Kim, Jung-Doo;Cha, Yong-Jun;Youn, Hye-Jin
김정두;차용준;윤혜진

  • Received : 2015.08.19
  • Accepted : 2015.09.22
  • Published : 2015.11.30

Abstract

PURPOSE: This study aimed to investigate the effect of emphasized initial contact gait training on balance and gait ability in hemiplegia patients. METHODS: Twenty-four hemiplegic patients were randomly allocated to an experimental group or control group. All participants received 30-min neurodevelopmental treatment. Furthermore, the experimental group received initial contact-emphasized auditory feedback gait training, whereas the control group received gait training without auditory feedback. The intervention was performed 3 times per week, 20 min per each time, for a total of 6 weeks. Balance was assessed using the center of pressure path length, center of pressure velocity, and limitation of stability path length, whereas gait ability was assessed using the 10-m walking test and functional gait assessment. RESULTS: In both groups, center of pressure path length and center of pressure velocity significantly decreased after training. Compared to the control group, the experimental group showed a 10% significant improvement (p<.05). In the limitation of stability path length of both sides, the experimental group showed a significant increase compared to that before intervention. Compared to the control group, the experimental group showed a 7% significant improvement in results of the 10-m walking test and functional gait assessment (p<.05). CONCLUSION: Emphasized Initial contact gait training is considered an effective treatment for improving gait ability and balance ability in stroke patients.

Keywords

Auditory biofeedback;Gait training;Balance;Stroke

References

  1. Bobath B. Adult hemiplegia: evaluation and treatment (2nd ed). London. Heinemann Medical Books. 1978.
  2. Butland RJ, Pang J, Gross ER, et al. Two-, six-, and 12-minute walking tests in respiratory disease. Br Med J. 1982; 284:1607-8. https://doi.org/10.1136/bmj.284.6329.1607
  3. Carr JH, Shepherd RB. A motor relearning programme for stroke. Oxford. William Heinemann Medical Books. 1982.
  4. Carr JH, Shepherd RB, Nordholm L, et al. Investigation of a new motor assessment scale for stroke patients. Phys Ther. 1985;65(2):175-80. https://doi.org/10.1093/ptj/65.2.175
  5. Chen G, Patten C, Kothari DH, et al. Gait differences between individuals with post-stroke hemiparesis and nondisabled controls at matched speeds. Gait Posture. 2005;22(1):51-6. https://doi.org/10.1016/j.gaitpost.2004.06.009
  6. Green J, Forster A, Bogle S, et al. Physiotherapy for patients with mobility problems more than 1 year after stroke: A randomized controlled trial. Lancet. 2002;359 (9302):199-203. https://doi.org/10.1016/S0140-6736(02)07443-3
  7. Jeon SN, Choi JH. The effects of ankle joint strategy exercises with and without visual feedback on the dynamic balance of stroke patients. J Phys Ther Sci. 2015;27 (8):2515-8. https://doi.org/10.1589/jpts.27.2515
  8. Jun HJ, Lee JS, Kim KJ, et al. Effect of auditory biofeedback training and kicking training on weight-bearing ratio in patients with hemiplegia. J Korean Soc Phys Med. 2014;9(4):363-73. https://doi.org/10.13066/kspm.2014.9.4.363
  9. Ki KI. The Effect of repetitive feedback training of plantar pressure sense for weight shift during gait in chronic hemiplegia patients. Doctor's Degree. Daejeon University. 2014.
  10. Kim NH, Cha YJ. Effect of gait training with constrainedinduced movement therapy (CIMT) on the balance of stroke patients. J Phys Ther Sci. 2015;27(3):611-3. https://doi.org/10.1589/jpts.27.611
  11. Kim SJ. Motor learning and control (2nd ed). Seoul. Daehan Media. 2010.
  12. Kim JW, Kim SM, Park RJ. The effects of task-oriented functional training on standing balance in stroke patients. Korean Soc Phys Ther. 2003;4(15):923-36.
  13. Kosak MC, Reding MJ. Comparison of partial body weightsupported treadmill gait training versus aggressive bracing assisted walking post stroke. Neurorehabil Neural Repair. 2000;14(1):13-9. https://doi.org/10.1177/154596830001400102
  14. Kwon HR, Shin WS. The effects of visual direction control on balance and gait speed in patients with stroke. J Korean Soc Phys Med. 2013;8(3):425-31. https://doi.org/10.13066/kspm.2013.8.3.425
  15. Kwon YC, Lee HJ, Tae KS. Development and evaluation of the auditory feedback gait training system induced symmetrical weight-bearing in hemiplegic patients. Rehabil Engineer and Assist Technol Soc of Korea. 2012;6(2):23-30.
  16. Laufer Y, Dickstein R, Resnik S, et al. Weight-bearing shifts of hemiparetic and healthy adults upon stepping on stairs of various heights. Clin Rehabil. 2000;14(2): 125-9. https://doi.org/10.1191/026921500674231381
  17. Luo Yi, Kirker KR, Prestwich GD. Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J Control Release. 2000;69(1):169-84. https://doi.org/10.1016/S0168-3659(00)00300-X
  18. Noh MH, Cho SH, Yi CH, et al. Effective frequency of externaal feedback for increasing the percentage of body weight loading on the affected leg of hemiplegic patients. Korean Res Soc Phys Ther. 1998;5(3):1-10.
  19. Pizzi A, Carlucci G, Falsini C, et al. Gait in hemiplegia: evaluation of clinical features with the Wisconsin Gait Scale. J Rehabil Med. 2007;39(2):170-4. https://doi.org/10.2340/16501977-0026
  20. Ryerson S, Levit K. Functional movement reeducation. New York. Churchill Livingstone. 1997.
  21. Salbach NM, Mayo NE, Robichaud-Ekstrand S, et al. The effect of a task-oriented walking intervention on improving balance self-efficacy poststroke: A randomized, controlled trial. J Am Geriatr Soc. 2005; 53(4):576-82. https://doi.org/10.1111/j.1532-5415.2005.53203.x
  22. Schmitz R, Arnold B. Intertester and intratester reliability of a dynamic balance protocol using the Biodex Stability System. J Sport Rehabil. 1998;7:95-101. https://doi.org/10.1123/jsr.7.2.95
  23. Shumway-Cook A, Anson D, Haller S. Postural sway biofeedback: its effect on reestablishing stance stability in hemiplegic patients. Arch Phys Med Rehabil. 1988;69(6):395-400.
  24. Song BK. The effect of tactile stimulation on two point discrimination, hand function, and ADL in impaired characteristics of stroke patient. J Korean Soc Phys Med. 2012;7(4):481-91. https://doi.org/10.13066/kspm.2012.7.4.481
  25. Sousa CO, Barela JA, Prado-Medeiros CL, et al. Gait training with partial body weight support during overground walking for individuals with chronic stroke: a pilot study. J Neuroeng Rehabil. 2011;8(1):48. https://doi.org/10.1186/1743-0003-8-48
  26. Thieme H, Ritschel C, Zange C. Reliability and validity of the functional gait assessment (German version) in subacute stroke patients. Arch Phys Med Rehabil. 2009;90(9):1565-70. https://doi.org/10.1016/j.apmr.2009.03.007
  27. Von Schroeder HP, Coutts RD, Lyden PD, et al. Gait parameters following stroke: a practical assessment. J Rehabil Res Dev. 1995;32(1):25-31.
  28. Wannstedt G, Craik R. Clinical evaluation of a sensory feedback device: the limb load monitor. Bull Prosthet Res. 1977;8-49.
  29. Werner C, Frankenberg S, Treig T. Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients. Stroke. 2002;33(12):2895-901. https://doi.org/10.1161/01.STR.0000035734.61539.F6
  30. Winstein CJ, Gardner ER, McNeal DR, et al. Standing balance training: effect on balance and locomotion in hemiparetic adults. Arch Phys Med Rehabil. 1989;70(10):755-62.
  31. Yavuzer G, Eser F, Karakus D, et al. The effects of balance training on gait late after stroke: a randomized controlled trial. Clin Rehabil. 2006;20(11):960-9. https://doi.org/10.1177/0269215506070315

Cited by

  1. Effects of gait training with auditory feedback on walking and balancing ability in adults after hemiplegic stroke pp.0342-5282, 2018, https://doi.org/10.1097/MRR.0000000000000295
  2. The Effect of Backward Walking Exercise using a Mirror on Balance and Gait in Patients with Stroke vol.13, pp.2, 2018, https://doi.org/10.13066/kspm.2018.13.2.53