DOI QR코드

DOI QR Code

Hyperpolarization: Sensitivity Boost in Magnetic Resonance Spectroscopy and Imaging

  • Ko, Hyeji ;
  • Gong, Gyeonghyeon ;
  • Jeong, Gijin ;
  • Choi, Ikjang ;
  • Seo, Hyeonglim ;
  • Lee, Youngbok
  • Received : 2015.09.12
  • Accepted : 2015.11.25
  • Published : 2015.12.20

Abstract

Hyperpolarization methods are the most emerging techniques in the field of magnetic resonance (MR) researches since they make a contribution to overcoming sensitivity limitation of MR spectroscopy and imaging, leading to new fields of researches, real-time in vivo metabolic/molecular imaging and MR analysis of chemical/biological reactions in non-equilibrium conditions. Make use of enormous signal enrichments, it becomes feasible to investigate various chemical and biochemical systems with low ${\gamma}$ nuclei in real-time. This review deals with the theoretical principals of common hyperpolarization methods and their experimental features. In addition, more detailed theories, mechanisms, and applications of dissolution dynamic nuclear polarization (D-DNP) are discussed.

Keywords

Hyperpolarization;dissolution DNP;MRS;MRI;real-time measurement

References

  1. J. Cavanagh, W. J. Fairbrother, A. G. Palmer, and N. J. Skelton, Protein NMR Spectroscopy: Principles And Practice, Academic Press, Inc., San Diego (1996)
  2. N. K. Kim, Y. S. Nam, and K. B. Lee, J. Kor. Magn. Reson. Soc. 18, 5 (2014) https://doi.org/10.6564/JKMRS.2014.18.1.005
  3. J. Y. Suh, T. K. Yu, Y. J. Yun, and K. O. Lee, J. Kor. Magn. Reson. Soc. 18, 1 (2014)
  4. C. R. Bowers and D. P. Weitekamp, Phys. Rev. Lett. 57, 2645 (1986) https://doi.org/10.1103/PhysRevLett.57.2645
  5. C. R. Bowers and D. P. Weitekamp, J. Am. Chem. Soc. 109, 5541 (1987) https://doi.org/10.1021/ja00252a049
  6. M. G. Pravica and D. P. Weitekamp, Chem. Phys. Lett. 145, 255 (1988) https://doi.org/10.1016/0009-2614(88)80002-2
  7. R. W. Adams, J. A. Aguilar, K. D. Atkinson, M. J. Cowley, P. I. P. Elliott, S. B. Duckett, G. G. R. Green, I. G. Khazal, J. Lopez-Serrano, and D. C. Williamson, Science 323, 1708 (2009) https://doi.org/10.1126/science.1168877
  8. A. S. Barton, N. R. Newbury, G. D. Cates, B. Driehuys, H. Middleton, and B. Saam, Phys. Rev. A 49, 2766 (1994) https://doi.org/10.1103/PhysRevA.49.2766
  9. G. Navon, Y. Q. Song, T. Room, S. Appelt, R. E. Taylor, and A. Pines, Science 271, 1848 (1996) https://doi.org/10.1126/science.271.5257.1848
  10. G. L. Closs, J. Am. Chem. Soc. 91, 4552 (1969) https://doi.org/10.1021/ja01044a043
  11. R. Kaptein and J. L. Oosterhoff, Chem. Phys. Lett. 4, 195 (1969) https://doi.org/10.1016/0009-2614(69)80098-9
  12. W. Muller-warmuth and K. Meisegresch, Adv. Magn. Reson. 11, 1 (1983) https://doi.org/10.1016/B978-0-12-025511-5.50007-4
  13. K. Munnemann, C. Bauer, J. Schmiedeskamp, H. W. Spiess, W. G. Schreiber, and D. Hinderberger, Appl. Magn. Reson. 34, 321 (2008) https://doi.org/10.1007/s00723-008-0130-8
  14. M. Reese, M. T. Turke, I. Tkach, G. Parigi, C. Luchinat, T. Marquardsen, A. Tavernier, P. Hofer, F. Engelke, C. Griesinger, and M. Bennati, J. Am. Chem. Soc. 131, 15086 (2009) https://doi.org/10.1021/ja905959n
  15. E. R. McCarney, B. D. Armstrong, M. D. Lingwood, and S. Han, Proc. Natl. Acad. Sci. U.S.A. 104, 1754 (2007) https://doi.org/10.1073/pnas.0610540104
  16. D. A. Hall, D. C. Maus, G. J. Gerfen, S. J. Inati, L. R. Becerra, F. W. Dahlquist, and R. G. Griffin, Science 276, 930 (1997) https://doi.org/10.1126/science.276.5314.930
  17. M. Goldman, Spin temperature and nuclear magnetic resonance in solids, Clarendon Press Oxford, Oxford (1970)
  18. J. H. Ardenkjaer-Larsen, B. Fridlund, A. Gram, G. Hansson, L. Hansson, M. H. Lerche, R. Servin, M. Thaning, and K. Golman, Proc. Natl. Acad. Sci. U.S.A. 100, 10158 (2003) https://doi.org/10.1073/pnas.1733835100
  19. K. Golman, J. H. Ardenaer-Larsen, J. S. Petersson, S. Mansson, and I. Leunbach, Proc. Natl. Acad. Sci. U.S.A. 100, 10435 (2003) https://doi.org/10.1073/pnas.1733836100
  20. K. Golman, R. in't Zandt, M. Lerche, R. Pehrson, and J. H. Ardenkjaer-Larsen, Cancer Res. 66, 10855 (2006) https://doi.org/10.1158/0008-5472.CAN-06-2564
  21. S. Hu, H. A. I. Yoshihara, R. Bok, J. Zhou, M. Zhu, J. Kurhanewicz, and D. B. Vigneron, Magn. Reson. Imaging 30, 1367 (2012) https://doi.org/10.1016/j.mri.2012.05.012
  22. G. D. Reed, P. E. Z. Larson, C. v. Morze, R. Bok, M. Lustig, A. B. Kerr, J. M. Pauly, J. Kurhanewicz, and D. B. Vigneron, J. Magn. Reson. 217, 41 (2012) https://doi.org/10.1016/j.jmr.2012.02.008
  23. S. J. Nelson, J. Kurhanewicz, D. B. Vigneron, P. E. Larson, A. L. Harzstark, M. Ferrone, M. van Criekinge, J. W. Chang, R. Bok, I. Park, G. Reed, L. Carvajal, E. J. Small, P. Munster, V. K. Weinberg, J. H. Ardenkjaer-Larsen, A. P. Chen, R. E. Hurd, L. I. Odegardstuen, F. J. Robb, J. Tropp, and J. A. Murray, Sci. Transl. Med. 5, 198ra108 (2013)
  24. S. Bowen and C. Hilty, Angew. Chem. Int. Ed. 47, 5235 (2008) https://doi.org/10.1002/anie.200801492
  25. Y. Lee, G. S. Heo, H. Zeng, K. L. Wooley, and C. Hilty, J. Am. Chem. Soc. 135, 4636 (2013) https://doi.org/10.1021/ja4001008

Cited by

  1. Minireview on Nuclear Spin Polarization in Optically-Pumped Diamond Nitrogen Vacancy Centers vol.20, pp.4, 2016, https://doi.org/10.6564/JKMRS.2016.20.4.114

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)