Hyperpolarization: Sensitivity Boost in Magnetic Resonance Spectroscopy and Imaging

  • Ko, Hyeji ;
  • Gong, Gyeonghyeon ;
  • Jeong, Gijin ;
  • Choi, Ikjang ;
  • Seo, Hyeonglim ;
  • Lee, Youngbok
  • Received : 2015.09.12
  • Accepted : 2015.11.25
  • Published : 2015.12.20


Hyperpolarization methods are the most emerging techniques in the field of magnetic resonance (MR) researches since they make a contribution to overcoming sensitivity limitation of MR spectroscopy and imaging, leading to new fields of researches, real-time in vivo metabolic/molecular imaging and MR analysis of chemical/biological reactions in non-equilibrium conditions. Make use of enormous signal enrichments, it becomes feasible to investigate various chemical and biochemical systems with low ${\gamma}$ nuclei in real-time. This review deals with the theoretical principals of common hyperpolarization methods and their experimental features. In addition, more detailed theories, mechanisms, and applications of dissolution dynamic nuclear polarization (D-DNP) are discussed.


Hyperpolarization;dissolution DNP;MRS;MRI;real-time measurement


  1. J. Cavanagh, W. J. Fairbrother, A. G. Palmer, and N. J. Skelton, Protein NMR Spectroscopy: Principles And Practice, Academic Press, Inc., San Diego (1996)
  2. N. K. Kim, Y. S. Nam, and K. B. Lee, J. Kor. Magn. Reson. Soc. 18, 5 (2014)
  3. J. Y. Suh, T. K. Yu, Y. J. Yun, and K. O. Lee, J. Kor. Magn. Reson. Soc. 18, 1 (2014)
  4. C. R. Bowers and D. P. Weitekamp, Phys. Rev. Lett. 57, 2645 (1986)
  5. C. R. Bowers and D. P. Weitekamp, J. Am. Chem. Soc. 109, 5541 (1987)
  6. M. G. Pravica and D. P. Weitekamp, Chem. Phys. Lett. 145, 255 (1988)
  7. R. W. Adams, J. A. Aguilar, K. D. Atkinson, M. J. Cowley, P. I. P. Elliott, S. B. Duckett, G. G. R. Green, I. G. Khazal, J. Lopez-Serrano, and D. C. Williamson, Science 323, 1708 (2009)
  8. A. S. Barton, N. R. Newbury, G. D. Cates, B. Driehuys, H. Middleton, and B. Saam, Phys. Rev. A 49, 2766 (1994)
  9. G. Navon, Y. Q. Song, T. Room, S. Appelt, R. E. Taylor, and A. Pines, Science 271, 1848 (1996)
  10. G. L. Closs, J. Am. Chem. Soc. 91, 4552 (1969)
  11. R. Kaptein and J. L. Oosterhoff, Chem. Phys. Lett. 4, 195 (1969)
  12. W. Muller-warmuth and K. Meisegresch, Adv. Magn. Reson. 11, 1 (1983)
  13. K. Munnemann, C. Bauer, J. Schmiedeskamp, H. W. Spiess, W. G. Schreiber, and D. Hinderberger, Appl. Magn. Reson. 34, 321 (2008)
  14. M. Reese, M. T. Turke, I. Tkach, G. Parigi, C. Luchinat, T. Marquardsen, A. Tavernier, P. Hofer, F. Engelke, C. Griesinger, and M. Bennati, J. Am. Chem. Soc. 131, 15086 (2009)
  15. E. R. McCarney, B. D. Armstrong, M. D. Lingwood, and S. Han, Proc. Natl. Acad. Sci. U.S.A. 104, 1754 (2007)
  16. D. A. Hall, D. C. Maus, G. J. Gerfen, S. J. Inati, L. R. Becerra, F. W. Dahlquist, and R. G. Griffin, Science 276, 930 (1997)
  17. M. Goldman, Spin temperature and nuclear magnetic resonance in solids, Clarendon Press Oxford, Oxford (1970)
  18. J. H. Ardenkjaer-Larsen, B. Fridlund, A. Gram, G. Hansson, L. Hansson, M. H. Lerche, R. Servin, M. Thaning, and K. Golman, Proc. Natl. Acad. Sci. U.S.A. 100, 10158 (2003)
  19. K. Golman, J. H. Ardenaer-Larsen, J. S. Petersson, S. Mansson, and I. Leunbach, Proc. Natl. Acad. Sci. U.S.A. 100, 10435 (2003)
  20. K. Golman, R. in't Zandt, M. Lerche, R. Pehrson, and J. H. Ardenkjaer-Larsen, Cancer Res. 66, 10855 (2006)
  21. S. Hu, H. A. I. Yoshihara, R. Bok, J. Zhou, M. Zhu, J. Kurhanewicz, and D. B. Vigneron, Magn. Reson. Imaging 30, 1367 (2012)
  22. G. D. Reed, P. E. Z. Larson, C. v. Morze, R. Bok, M. Lustig, A. B. Kerr, J. M. Pauly, J. Kurhanewicz, and D. B. Vigneron, J. Magn. Reson. 217, 41 (2012)
  23. S. J. Nelson, J. Kurhanewicz, D. B. Vigneron, P. E. Larson, A. L. Harzstark, M. Ferrone, M. van Criekinge, J. W. Chang, R. Bok, I. Park, G. Reed, L. Carvajal, E. J. Small, P. Munster, V. K. Weinberg, J. H. Ardenkjaer-Larsen, A. P. Chen, R. E. Hurd, L. I. Odegardstuen, F. J. Robb, J. Tropp, and J. A. Murray, Sci. Transl. Med. 5, 198ra108 (2013)
  24. S. Bowen and C. Hilty, Angew. Chem. Int. Ed. 47, 5235 (2008)
  25. Y. Lee, G. S. Heo, H. Zeng, K. L. Wooley, and C. Hilty, J. Am. Chem. Soc. 135, 4636 (2013)

Cited by

  1. Minireview on Nuclear Spin Polarization in Optically-Pumped Diamond Nitrogen Vacancy Centers vol.20, pp.4, 2016,


Supported by : National Research Foundation of Korea (NRF)