DOI QR코드

DOI QR Code

Sequencing and Characterization of Divergent Marbling Levels in the Beef Cattle (Longissimus dorsi Muscle) Transcriptome

  • Chen, Dong (College of Animal Science and Technology, China Agricultural University) ;
  • Li, Wufeng (College of Life Science, Shanxi Agriculture University) ;
  • Du, Min (Department of Animal Sciences, Washington State University) ;
  • Wu, Meng (Snowdragon Beef Co., Ltd.) ;
  • Cao, Binghai (College of Animal Science and Technology, China Agricultural University)
  • Received : 2014.05.24
  • Accepted : 2014.08.25
  • Published : 2015.02.01

Abstract

Marbling is an important trait regarding the quality of beef. Analysis of beef cattle transcriptome and its expression profile data are essential to extend the genetic information resources and would support further studies on beef cattle. RNA sequencing was performed in beef cattle using the Illumina High-Seq2000 platform. Approximately 251.58 million clean reads were generated from a high marbling (H) group and low marbling (L) group. Approximately 80.12% of the 19,994 bovine genes (protein coding) were detected in all samples, and 749 genes exhibited differential expression between the H and L groups based on fold change (>1.5-fold, p<0.05). Multiple gene ontology terms and biological pathways were found significantly enriched among the differentially expressed genes. The transcriptome data will facilitate future functional studies on marbling formation in beef cattle and may be applied to improve breeding programs for cattle and closely related mammals.

Keywords

Marbling;Beef Cattle;Transcriptome;RNA-Sequencing

References

  1. Cox, M. P., D. A. Peterson, and P. J. Biggs. 2010. SolexaQA: At-aglance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics 11:485. https://doi.org/10.1186/1471-2105-11-485
  2. Baldwin, R. L. V., R. W. Li, C. Li, J. M. Thomson, and B. J. Bequette. 2012. Characterization of the longissimus lumborum transcriptome response to adding propionate to the diet of growing Angus beef steers. Physiol. Genomics 44:543-550. https://doi.org/10.1152/physiolgenomics.00144.2011
  3. Cloonan, N. and S. M. Grimmond. 2008. Transcriptome content and dynamics at single-nucleotide resolution. Genome Biol. 9:234. https://doi.org/10.1186/gb-2008-9-9-234
  4. de Hoon, M. J. L., S. Imoto, J. Nolan, and S. Miyano. 2004. Open source clustering software. Bioinformatics 20:1453-1454. https://doi.org/10.1093/bioinformatics/bth078
  5. Driver, A. M., F. Penagaricano, W. Huang, K. R. Ahmad, K. S. Hackbart, M. C. Wiltbank, and H. Khatib. 2012. RNA-Seq analysis uncovers transcriptomic variations between morphologically similar in vivo- and in vitro-derived bovine blastocysts. BMC Genomics 13:118. https://doi.org/10.1186/1471-2164-13-118
  6. Grobet, L., L. J. R. Martin, D. Poncelet, D. Pirottin, B. Brouwers, J. Riquet, A. Schoeberlein, S. Dunner, F. Menissier, J. Massabanda, R. Fries, R. Hanset, and M. Georges. 1997. A deletion in the bovine myostatin gene causes the doublemuscled phenotype in cattle. Nat. Genet. 17:71-74. https://doi.org/10.1038/ng0997-71
  7. Hausman, G. J., M. V. Dodson, K. Ajuwon, M. Azain, K. M. Barnes, L. L. Guan, Z. Jiang, S. P. Poulos, R. D. Sainz, S. Smith et al. 2009. Board-invited review: the biology and regulation of preadipocytes and adipocytes in meat animals. J. Anim. Sci. 87:1218-1246. https://doi.org/10.2527/jas.2008-1427
  8. He, H. and X. Liu. 2013. Characterization of transcriptional complexity during longissimus muscle development in bovines using high-throughput sequencing. PloS one 8(6):e64356. https://doi.org/10.1371/journal.pone.0064356
  9. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  10. Huang, D. W., B. T. Sherman, and R. A. Lempicki. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4:44-57. https://doi.org/10.1038/nprot.2008.211
  11. Kim, D., G. Pertea, C. Trapnell, H. Pimentel, R. Kelley, and S. L. Salzberg. 2013. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14:R36. https://doi.org/10.1186/gb-2013-14-4-r36
  12. Langmead, B. and S. L. Salzberg. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9:357-359. https://doi.org/10.1038/nmeth.1923
  13. Marioni, J. C., C. E. Mason, S. M. Mane, M. Stephens, and Y. Gilad. 2008. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 18:1509-1517. https://doi.org/10.1101/gr.079558.108
  14. Nagalakshmi, U., Z. Wang, K. Waern, C. Shou, D. Raha, M. Gerstein, and M. Snyder. 2008. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344-1349. https://doi.org/10.1126/science.1158441
  15. Reecy, J., D. M. Spurlock, and C. H. Stahl. 2006. Gene expression profiling: insights into skeletal muscle growth and development. J. Anim. Sci. 84:E150-E154. https://doi.org/10.2527/2006.8413_supplE150x
  16. 't Hoen, P. A. C., Y. Ariyurek, H. H. Thygesen, E. Vreugdenhil, R. H. A. M. Vossen, R. X. de Menezes, J. M. Boer, G-J. B. van Ommen, and J. T. den Dunnen. 2008. Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucl. Acids Res. 36:e141. https://doi.org/10.1093/nar/gkn705
  17. Trapnell, C., A. Roberts, L. Goff, G. Pertea, D. Kim, D. R. Kelley, H. Pimentel, S. L. Salzberg, J. L. Rinn, and L. Pachter. 2012. Differential gene and transcript expression analysis of RNAseq experiments with TopHat and Cufflinks. Nat. Protoc. 7:562-578. https://doi.org/10.1038/nprot.2012.016
  18. Wang, Z., M. Gerstein, and M. Snyder. 2009. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 10:57-63. https://doi.org/10.1038/nrg2484
  19. Trapnell, C., B. A. Williams, G. Pertea, A. Mortazavi, G. Kwan, M. J. van Baren, S. L. Salzberg, B. J. Wold, and L. Pachter. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28:511-515. https://doi.org/10.1038/nbt.1621
  20. Wang, Y. H., N. I. Bower, A. Reverter, S. H. Tan, N. De Jager, R. Wang, S. M. McWilliam, L. M. Cafe, P. L. Greenwood, and S. A. Lehnert. 2009. Gene expression patterns during intramuscular fat development in cattle. J. Anim. Sci. 87:119-130. https://doi.org/10.2527/jas.2008-1082
  21. Wang, Y. H., K. A. Byrne, A. Reverter, G. S. Harper, M. Taniguchi, S. M. McWilliam, H. Mannen, K. Oyama, and S. A. Lehnert. 2005. Transcriptional profiling of skeletal muscle tissue from two breeds of cattle. Mamm. Genome 16:201-210. https://doi.org/10.1007/s00335-004-2419-8
  22. Werner, T. 2010. Next generation sequencing in functional genomics. Brief. Bioinform. 11:499-511. https://doi.org/10.1093/bib/bbq018

Cited by

  1. Detection of genetic variants between different Polish Landrace and Puławska pigs by means of RNA-seq analysis vol.49, pp.3, 2018, https://doi.org/10.1111/age.12654
  2. Longissimus dorsi muscle transcriptomic analysis of Yunling and Chinese simmental cattle differing in intramuscular fat content and fatty acid composition vol.61, pp.8, 2018, https://doi.org/10.1139/gen-2017-0164
  3. Sliding window haplotype approaches overcome single SNP analysis limitations in identifying genes for meat tenderness in Nelore cattle vol.20, pp.1, 2019, https://doi.org/10.1186/s12863-019-0713-4