DOI QR코드

DOI QR Code

Effect of High Dietary Carbohydrate on the Growth Performance, Blood Chemistry, Hepatic Enzyme Activities and Growth Hormone Gene Expression of Wuchang Bream (Megalobrama amblycephala) at Two Temperatures

  • Zhou, Chuanpeng (Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences) ;
  • Ge, Xianping (Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences) ;
  • Liu, Bo (Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences) ;
  • Xie, Jun (Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences) ;
  • Chen, Ruli (Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences) ;
  • Ren, Mingchun (Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences)
  • Received : 2013.11.08
  • Accepted : 2014.07.20
  • Published : 2015.02.01

Abstract

The effects of high carbohydrate diet on growth, serum physiological response, and hepatic heat shock protein 70 expression in Wuchang bream were determined at $25^{\circ}C$ and $30^{\circ}C$. At each temperature, the fish fed the control diet (31% CHO) had significantly higher weight gain, specific growth rate, protein efficiency ratio and hepatic glucose-6-phosphatase activities, lower feed conversion ratio and hepatosomatic index (HSI), whole crude lipid, serum glucose, hepatic glucokinase (GK) activity than those fed the high-carbohydrate diet (47% CHO) (p<0.05). The fish reared at $25^{\circ}C$ had significantly higher whole body crude protein and ash, serum cholesterol and triglyceride, hepatic G-6-Pase activity, lower glycogen content and relative levels of hepatic growth hormone (GH) gene expression than those reared at $30^{\circ}C$ (p<0.05). Significant interaction between temperature and diet was found for HSI, condition factor, hepatic GK activity and the relative levels of hepatic GH gene expression (p<0.05).

Keywords

Megalobrama amblycephala;Dietary Carbohydrate;Temperature;Growth;Serum Parameters;Hepatic Enzymes Activities

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Abdel-Tawwab, M., M. H. Ahmad, Y. A. E. Khattab, and A. M. E. Shalaby. 2010. Effect of dietary protein level, initial body weight, and their interaction on the growth, feed utilization and physiological alterations of Nile tilapia, Oreochromis niloticus (L.). Aquaculture 298:267-274. https://doi.org/10.1016/j.aquaculture.2009.10.027
  2. AOAC International. 1997. Official Methods of Analysis. 16th edn. Association of Official Analytical Chemists International, Arlington, VA, USA.
  3. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Brett, J. R., J. E. Shelboum, and C. T. Shoop. 1969. Growth rate and body composition of fingerling sockeye salmon, Oncorhynchus nerka, in relation to temperature and ration size. J. Fish. Res. Board Can. 26: 2363-2394. https://doi.org/10.1139/f69-230
  5. Cai, C. F. 2004. Study on the utilization of dietary carbohydrate by Mylopharyngodon piecus Richardson and Carassius auratus and their mechanism of metabolism. Ph.D. Thesis. Shanghai East China Normal University, Shanghai, China.
  6. Clarke, A. 2004. Is there a universal temperature dependence of metabolism? Funct. Ecol. 18:252-256. https://doi.org/10.1111/j.0269-8463.2004.00842.x
  7. Donaldson, E. M., U. H. M. Fagerlund, D. A. Higgs, and J. R. Mcbride. 1979. Hormonal enhancement of growth. Fish Physiol. 8:455-597. https://doi.org/10.1016/S1546-5098(08)60032-1
  8. Duan, C. 1998. Nutritional and developmental regulation of insulin-like growth factors in fish. J. Nutr. 128:306S-314S.
  9. Han, J. C., G. Y. Liu, P. S. Mei, Y. P. Huang, D. F. Liu, and Q. W. Chen. 2010. Effects of temperature on the hematological indices and digestive enzyme activities of Crucian Carp (Carassius auratus). Journal of Hydroecology 3:87-92.
  10. Enes, P., S. Panserat, S. Kaushik, and A. Oliva-Teles. 2006. Rapid metabolic adaptation in European sea bass (Dicentrarchus labrax) juveniles fed different carbohydrate sources after heat shock stress. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 145:73-81. https://doi.org/10.1016/j.cbpa.2006.05.002
  11. Furuichi, M. and Y. Yone. 1980. Effect of dietary dextrin levels on growth and feed efficiency, the chemical composition of liver and dorsal muscle, and the absorption of dietary protein and dextrin in fishes. Bull. Japan. Soc. Sci. Fish. 46:225-229. https://doi.org/10.2331/suisan.46.225
  12. Gillooly, J. F., J. H. Brown, G. B. West, V. M. Savage, and E. L. Charnov. 2001. Effects of size and temperature on metabolic rate. Science 293:2248-2251. https://doi.org/10.1126/science.1061967
  13. Hemre, G. I. and T. Hansen. 1998. Utilisation of different dietary starch sources and tolerance to glucose loading in Atlantic salmon (Salmo salar), during parr-smolt transformation. Aquaculture 161:145-157. https://doi.org/10.1016/S0044-8486(97)00266-4
  14. Hemre, G. I., T. P. Mommsen, and A. Krogdahl. 2002. Carbohydrates in fish nutrition: Effects on growth, glucose metabolism and hepatic enzymes. Aquac. Nutr. 8:175-194. https://doi.org/10.1046/j.1365-2095.2002.00200.x
  15. Hochachka, P. W. and G. N. Somero. 2002. Biochemical Adaptation: Mechanism and Processing Physiological Evolution. Oxford University Press, NewYork, NY, USA.
  16. Jauncey, K. 1982. Carp (Cyprinus carpio L.) nutrition - A review. In: Recent Advances in Aquaculture (Eds. J. F. Muir, and R. J. Roberts). Croom Helm Ltd, London, UK. 215-263.
  17. Jobling, M. 1994. Fish Bioenergetics, Fish and Fisheries Series. Chapman and Hall, London, UK. 13:213-230.
  18. Ke, H. 1975. An excellent freshwater food fish, Megalobrama amblycephala, and its propagating and culturing. Acta Hydrobiol. Sin. 5:293-312.
  19. Krogdahl, Å ., G. I. Hemre, and T. P. Mommsen. 2005. Carbohydrates in fish nutrition: digestion and absorption in postlarval stages. Aquac. Nutr. 11:103-122. https://doi.org/10.1111/j.1365-2095.2004.00327.x
  20. Ke, H. 1986. Cultivation of blunt snout bream (Megalobrama amblycephala) in China. Fish. Sci. Technol. Inf. 5:1-5.
  21. Keembiyehetty, C. N. and R. P. Wilson. 1998. Effect of water temperature on growth and nutrient utilization of sunshine bass (Morone chrysops×Morone saxatilis) fed diets containing different energy/protein ratios. Aquaculture 166:151-162. https://doi.org/10.1016/S0044-8486(98)00277-4
  22. Kirchner, S., S. Kaushik, and S. Panserat. 2003. Effect of partial substitution of dietary protein by a single gluconeogenic dispensable amino acid on hepatic glucose metabolism in rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology Part A 134: 337-347. https://doi.org/10.1016/S1095-6433(02)00267-2
  23. Kumar, V., W. K. B. Khalil, U. Weiler, and K. Becker. 2013. Influences of incorporating detoxified Jatropha curcas kernel meal in common carp (Cyprinus carpio L.) diet on the expression of growth hormone- and insulin-like growth factor-1-encoding genes. J. Anim. Physiol. Anim. Nutr (Berl). 97:97-108. https://doi.org/10.1111/j.1439-0396.2011.01247.x
  24. Lall, S. P. 1991. Salmonid nutrition and feed production. In: Proceedings of the special session on salmonid aquaculture. World Aquaculture Society, Los Angeles, CA, USA. 107-123.
  25. Leung, L. Y. and N. Y. S. Woo. 2012. Influence of dietary carbohydrate level on endocrine status and hepatic carbohydrate metabolism in the marine fish Sparus sarba. Fish Physiol. Biochem. 38:543-554. https://doi.org/10.1007/s10695-011-9534-8
  26. Médale, F., J. M. Poli, F. Vallée, and D. Blanc. 1999. Utilization of a carbohydrate-rich diet by common carp reared at 18 and $25^{\circ}C$. Cybium 23:139-152.
  27. Panserat, S., F. Medale, J. Breque, E. Plagnes-Juan, and S. Kaushik. 2000a. A Lack of significant long-term effect of dietary carbohydrates on hepatic glucose-6-phosphatase expression in rainbow trout (Oncorhynchus mykiss). J. Nutr. Biochem. 11:22-29. https://doi.org/10.1016/S0955-2863(99)00067-4
  28. Meton, I., A. Caseras, F. Fernandez, and I. V. Baanante. 2004. Molecular cloning of hepatic glucose-6-phosphate catalytic subunit from gilthead sea bream (Sparus aurata): Response of its mRNA levels and glucokinase expression to refeeding and diet composition. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 138:145-153. https://doi.org/10.1016/j.cbpc.2004.03.004
  29. Miao, L. H., B. Liu, X. P. Ge, J. Xie, C. P. Zhou, L. K. Pan, R. L. Chen, and Q. L. Zhou. 2011. Effect of high carbohydrate levels in the dietary on growth performance, immunity and transmission electron microscopy (TEM) on hepatic cell of allogynogenetic crucian carp (Carassius auratus gibelio). J. Fish. China 35:221-230.
  30. Moreira, I. S., H. Peres, A. Couto, P. Enes, and A. Oliva-Teles. 2008. Temperature and dietary carbohydrate level effects on performance and metabolic utilization of diets in European sea bass (Dicentrarchus labrax) juveniles. Aquaculture 274:153-160. https://doi.org/10.1016/j.aquaculture.2007.11.016
  31. Panserat, S., F. Medale, C. Blin, J. Breque, C. Vachot, E. Plagnes-Juan, E. Gomes, R. Krishnamoorthy, and S. Kaushik. 2000b. Hepatic glucokinase is induced by dietary carbohydrates in rainbow trout, gilthead seabream, and common carp. Am. J. Physiol. 278: R1164-R1170.
  32. Panserat, S., E. Plagnes-Juan, and S. Kaushik. 2002. Gluconeogenic enzyme gene expression is decreased by dietary carbohydrates in common carp (Cyprinus carpio) and gilthead seabream (Sparus aurata). Biochim. Biophys. Acta 1579:35-42. https://doi.org/10.1016/S0167-4781(02)00501-8
  33. Peragon, J., J. B. Barroso, L. Garcia-Salguero, M. Higuera, and J. A. Lupianez. 1999. Carbohydrates affect protein-turnover rates, growth, and nucleic acid content in the white muscle of rainbow trout (Oncorhynchus mykiss). Aquaculture 179:425-437. https://doi.org/10.1016/S0044-8486(99)00176-3
  34. Plummer, P. 1987. Glycogen determination in animal tissues. An Introduction to Practical Biochemistry, 3rd edn. McGraw Hill Book, Maidenhead, UK. 332 p.
  35. Peres, H. and A. Oliva-Teles. 1999. Influence of temperature on protein utilization in juvenile European seabass (Dicentrarchus labrax). Aquaculture 170:337-348. https://doi.org/10.1016/S0044-8486(98)00422-0
  36. Pérez-Sánchez, J. and P. Le Bail. 1999. Growth hormone axis as marker of nutritional status and growth performance in fish. Aquaculture 177:117-128. https://doi.org/10.1016/S0044-8486(99)00073-3
  37. Person-Le Ruyet, J., K. Mahe, N. Le Bayon, and H. Le Delliou. 2004. Effects of temperature on growth and metabolism in a Mediterranean population of European sea bass, Dicentrarchus labrax. Aquaculture 237:269-280. https://doi.org/10.1016/j.aquaculture.2004.04.021
  38. Ren, M. C., Q. H. Ai, K. S. Mai, H. M. Ma, and X. J. Wang. 2011. Effect of dietary carbohydrate level on growth performance, body composition, apparent digestibility coefficient and digestive enzyme activities of juvenile cobia, Rachycentron canadum L. Aquac. Res. 42:1467-1475. https://doi.org/10.1111/j.1365-2109.2010.02739.x
  39. Roberts, R. J. 1989. Nutritional pathology of teleosts. In: Fish pathology (Ed. R. J. Roberts). Bailliere Tindall, London, UK. 337-362.
  40. Shikata, T., S. Iwanaga, and S. Shimeno. 1995. Regulation of carbohydrate metabolism in fish 25. Metabolic response to acclimation temperature in carp. Fish. Sci. 61:512-516. https://doi.org/10.2331/fishsci.61.512
  41. Tan, Q. S., F. Wang, S. Q. Xie, X. M. Zhu, W. Lei, and J. Z. Shen. 2009. Effect of high dietary starch levels on the growth performance, blood chemistry and body composition of gibel carp (Carassius auratus var. gibelio). Aquac. Res. 40:1011-1018. https://doi.org/10.1111/j.1365-2109.2009.02184.x
  42. Tranulis, M. A., O. Dregni, B. Christophersen, A. Krogdahl, and B. Borrebaek. 1996. A glucokinase-like enzyme in the liver of Atlantic salmon (Salmo salar). Comp. Biochem. Physiol. Biochem. Mol. Biol. 114B:35-39.
  43. Tymchuk, W. E., B. Beckman, and R. H. Devlin. 2009. Altered expression of growth hormone/insulin-like growth factor I axis hormones in domesticated fish. Endocrinology 150:1809-1816. https://doi.org/10.1210/en.2008-0797
  44. Yu, S. K., C. E. Olsen, and J. Marcussen. 1997. Methods for the assay of 1,5-anhydro-D-fructose and $\alpha$-1,4-glucanlyase. Carbohydr. Res. 305:73-82. https://doi.org/10.1016/S0008-6215(97)00226-7
  45. Vielma, J., J. Koskela, K. Ruohonen, I. Jokinen, and J. Kettunen. 2003. Optimal diet composition for European whitefish (Coregonus lavaretus): Carbohydrate stress and immune parameter responses. Aquaculture 225:3-16. https://doi.org/10.1016/S0044-8486(03)00271-0
  46. Wilson, R. P. 1994. Utilization of dietary carbohydrate by fish. Aquaculture 124:67-80. https://doi.org/10.1016/0044-8486(94)90363-8
  47. Yang, G. H., Q. X. Dai, and L. D. Gu. 1989. Nutrition, feed formulation and high-yield aquaculture techniques of blunt snout bream (Megalobrama amblycephala). Feed Industry 1:7-10.
  48. Zhou, C. P., B. Liu, J. Xie, X. P. Ge, P. Xu, Q. L. Zhou, L. K. Pan, and R. L. Chen. 2013. Effect of dietary carbohydrate level on growth performance, blood chemistry, hepatic enzyme activity, and growth hormone gene expression in Wuchang bream (Megalobrama amblycephala). The Israeli Journal of Aquaculture - Bamidgeh, IJA_65.2013.882, 8 pages.
  49. Zhou, Z., Z. Ren, H. Zeng, and B. Yao. 2008. Apparent digestibility of various feedstuffs for blunt nose black bream Megalobrama amblycephala Yih. Aquac. Nutr. 14:153-165. https://doi.org/10.1111/j.1365-2095.2007.00515.x

Cited by

  1. shrimp to acute low-salinity challenge vol.48, pp.7, 2016, https://doi.org/10.1111/are.13220
  2. liver in relation to fatty liver induced by high non-protein energy diets vol.48, pp.8, 2016, https://doi.org/10.1111/are.13228
  3. Temperature effects on gene expression and morphological development of European eel, Anguilla anguilla larvae vol.12, pp.8, 2017, https://doi.org/10.1371/journal.pone.0182726
  4. ) subjected to varied starch and protein levels of diets vol.16, pp.2, 2017, https://doi.org/10.1080/1828051X.2016.1275953
  5. Transcriptomics, metabolomics and histology indicate that high-carbohydrate diet negatively affects the liver health of blunt snout bream (Megalobrama amblycephala) vol.18, pp.1, 2017, https://doi.org/10.1186/s12864-017-4246-9
  6. Sapium ellipticum (Hochst) Pax ethanol leaf extract modulates glucokinase and glucose-6-phosphatase activities in streptozotocin induced diabetic rats vol.7, pp.6, 2017, https://doi.org/10.1016/j.apjtb.2017.05.009
  7. Resveratrol Improves the Energy Sensing and Glycolipid Metabolism of Blunt Snout Bream Megalobrama amblycephala Fed High-Carbohydrate Diets by Activating the AMPK–SIRT1–PGC-1α Network vol.9, pp.1664-042X, 2018, https://doi.org/10.3389/fphys.2018.01258
  8. fed a pelleted diet vol.40, pp.3, 2018, https://doi.org/10.2989/1814232X.2018.1503969
  9. (Linnaeus, 1758) vol.49, pp.5, 2018, https://doi.org/10.1111/are.13653
  10. Molecular characterization and identification of facilitative glucose transporter 2 (GLUT2) and its expression and of the related glycometabolism enzymes in response to different starch levels in blunt snout bream (Megalobrama amblycephala) vol.44, pp.3, 2018, https://doi.org/10.1007/s10695-018-0477-1
  11. Dietary leucine affects glucose metabolism and lipogenesis involved in TOR/PI3K/Akt signaling pathway for juvenile blunt snout bream Megalobrama amblycephala pp.1573-5168, 2019, https://doi.org/10.1007/s10695-018-0594-x