Nanotechnology in Meat Processing and Packaging: Potential Applications - A Review

  • Ramachandraiah, Karna (Department of Animal Science and Functional Food Research Center, Chonnam National University) ;
  • Han, Sung Gu (Department of Food Science and Biotechnology of Animal Resources, College of Animal Bioscience and Technology, Konkuk University) ;
  • Chin, Koo Bok (Department of Animal Science and Functional Food Research Center, Chonnam National University)
  • Received : 2014.08.08
  • Accepted : 2014.11.26
  • Published : 2015.02.01


Growing demand for sustainable production, increasing competition and consideration of health concerns have led the meat industries on a path to innovation. Meat industries across the world are focusing on the development of novel meat products and processes to meet consumer demand. Hence, a process innovation, like nanotechnology, can have a significant impact on the meat processing industry through the development of not only novel functional meat products, but also novel packaging for the products. The potential benefits of utilizing nanomaterials in food are improved bioavailability, antimicrobial effects, enhanced sensory acceptance and targeted delivery of bioactive compounds. However, challenges exist in the application of nanomaterials due to knowledge gaps in the production of ingredients such as nanopowders, stability of delivery systems in meat products and health risks caused by the same properties which also offer the benefits. For the success of nanotechnology in meat products, challenges in public acceptance, economics and the regulation of food processed with nanomaterials which may have the potential to persist, accumulate and lead to toxicity need to be addressed. So far, the most promising area for nanotechnology application seems to be in meat packaging, but the long term effects on human health and environment due to migration of the nanomaterials from the packaging needs to be studied further. The future of nanotechnology in meat products depends on the roles played by governments, regulatory agencies and manufacturers in addressing the challenges related to the application of nanomaterials in food.


Nanotechnology;Nanomaterials;Meat Products;Application;Challenges;Risks


Grant : Cooperative Research Program for Agriculture Science & Technology Development

Supported by : Rural Development Administration


  1. Avella, M., J. J. De Vlieger, M. E. Errico, S. Fischer, P. Vacca, and M. G. Volpe. 2005. Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem. 93:467-474.
  2. Abdou, E. S., A. S. Osheba, and M. A. Sorour. 2012. Effect of chitosan and chitosan-nanoparticles as active coating on microbiological characteristics of fish fingers. Int. J. Appl. Sci. Technol. 2:158-169.
  3. Akbarzadeh, A., R. Rezaei-Sadabady, S. Davaran, S. W. Joo, N. Zarghami, Y. Hanifehpour, M. Samiei, M. Kouhi, and K. Nejati-Koshki. 2013. Liposome: classification, preparation, and applications. Nanoscale Res. Lett. 8:102.
  4. Althues, H., J. Henle, and S. Kaskel. 2007. Functional inorganic nanofillers for transparent polymers. Chem. Soc. Rev. 36:1454-1465.
  5. Augustin, M. A. and P. Sanguansri. 2009. Nanostructured materials in the food industry. Adv. Food. Nutr. Res. 58:183-213.
  6. Borm, P. J. A. and D. Berube. 2008. A tale of opportunities, uncertainties, and risks. Nano Today 3:56-59.
  7. Brody, A. L., B. Bugusu, J. H. Han, C. K. Sand, and T. H. Mchugh. 2008. Innovative food packaging solutions. J. Food Sci. 73:107-116.
  8. Borm, P. J. A., D. Robbins, S. Haubold, T. Kuhlbusch, H. Fissan, K. Donaldson, R. Schins, V. Stone, W. Kreyling, J. Lademann, J. Krutmann, D. Warheit, and E. Oberdorster. 2006. The potential risks of nanomaterials: A review carried out for ECETOC. Part. Fibre Toxicol. 3:11.
  9. Bouwmeester, H., S. Dekkers, M. Y. Noordam, W. I. Hagens, A. S. Bulder, C. de Heer, T. S. E. Voorde, S. W. Wijnhoven, H. J. Marvin, and A. J. Sips. 2009. Review of health safety aspects of nanotechnologies in food production. Regul. Toxicol. Pharmacol. 53:52-62.
  10. Bouwmeester, H. and H. J. P. Marvin. 2010. Potential risks of nanofood to consumers. In: Nanotechnologies in Food (Eds. Q. L. Chaudhry, L. Castle, and R. Watkins). Royal Society of Chemistry Publishers, Cambridge, UK. pp. 134-140.
  11. Carlson, C., S. M. Hussain, A. M. Schrand, L. K. Braydich-Stolle, K. L. Hess, R. L. Jones, and J. J. Schlager. 2008. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J. Phys. Chem. B. 112:13608-13619.
  12. Carrero-Sanchez, J. C., A. L. Elias, R. Mancilla, G. Arrellin, H. Terrones, J. P. Laclette, and M. Terrones. 2006. Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen. Nano Lett. 6:1609-1616.
  13. Chaudhry, Q., M. Scotter, J. Blackburn, B. Ross, A. Boxall, and L. Castle. 2008. Applications and implications of nanotechnologies for the food sector. Food Addit. Contam. 25:241-258.
  14. Chaudhry, Q., R. Watkins, and L. Castle. 2010. Knowns, unknowns and unknown unknowns In: Nanotechnologies in Food (Eds. Q. L. Chaudhry, L. Castle, and R. Watkins). Royal Society of Chemistry Publishers, Cambridge, UK. pp. 212-214.
  15. Chaudhry, Q. and L. Castle. 2011. Food applications of nanotechnologies: An overview of opportunities and challenges for developing countries. Trends Food Sci. Technol. 22:595-603.
  16. Corley, E., D. A. Scheufele, and Q. Hu. 2009. Of risks and regulations: how leading U.S. nanoscientists form policy stances about nanotechnology. J. Nanopart. Res. 11:1573-1585.
  17. Chen, L. and M. Subirade. 2005. Chitosan/$\beta$-lactoglobulin core-shell nanoparticles as nutraceutical carriers. Biomaterials 26:6041-6053.
  18. Chen, M. F., Y. P. Lin, and T. J. Cheng. 2013. Public attitudes toward nanotechnology applications in Taiwan. Technovation 33:88-96.
  19. Cockburn, A., R. Bradford, N. Buck, A. Constable, G. Edwards, B. Haber, P. Hepburn, J. Howlett, F. Kampers, C. Klein, M. Radomski, H. Stamm, S. Wijnhoven, and T. Wildeman. 2012. Approaches to the safety assessment of engineered nanomaterials (ENM) in food. Food Chem. Toxicol. 50:2224-2242.
  20. Cubukcua, M., S. Timurb, and U. Anik. 2007. Examination of performance of glassy carbon paste electrode modified with gold nanoparticle and xanthine oxidase for xanthine and hypoxanthine detection. Talanta 74:434-439.
  21. Cushen, M., J. Kerry, M. Morris, M. Cruz-Romero, and E. Cummins. 2012. Nanotechnologies in the food industry - Recent developments, risks and regulation. Trends Food Sci. Technol. 24:30-46.
  22. Danhier, F., E. Ansorena, J. M. Silva, R. Coco, A. L. Breton, and V. Preat. 2012. PLGA-based nanoparticles: An overview of biomedical applications. J. Control. Release 161:505-522.
  23. de Azeredo, H. M. C. 2009. Nanocomposites for food packaging applications. Food Res. Int. 42:1240-1253.
  24. Diallo, M. and C. J. Brinker. 2011. Nanotechnology for sustainability: Environment, water, food, minerals, and climate. In: Nanotechnology Research Directions for Societal Needs in 2020: Retrospective and outlook (Eds. M. C. Roco, C. A. Mirkin, and M. C. Hersam). Springer, London, UK. pp. 229.
  25. Fedotova, A. V., A. G. Snezhko, O. A. Sdobnikova, L. G. Samoilova, T. A. Smurova, A. A. Revina, and E. B. Khailova. 2010. Packaging materials manufactured from natural polymers modified with silver nanoparticles. Int. Polym. Sci. Technol. 37:59-64.
  26. Dias. M. V., N. F. Soares, S. V. Borges, M. M. de Sousa, C. A. Nunes, I. R. N. de Oliveira, and E. A. A. Medeiros. 2013. Use of allyl isothiocyanate and carbon nanotubes in an antimicrobial film to package shredded, cooked chicken meat. Food Chem. 141:3160-3166.
  27. Duncan, T. V. 2011. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J. Colloid Interface Sci. 363:1-24.
  28. EFSA. 2009. Scientific opinion of the scientific committee. The potential risks arising from nanoscience and nanotechnologies on food and feed safety. EFSA J. 958:1-39.
  29. Evans, H. M. 2009. Nanotechnology enabled sensing. Report of the national nanotechnology workshop, National Nanotechnolo-gical Initiative workshop. pp. 9, 27-34.
  30. Fernandez, A., S. T. Giner, and J. M. Lagaron. 2009. Novel route to stabilization of bioactive antioxidants by encapsulation in electrospun fibers of zein prolamine. Food Hydrocol. 23:1427-1432.
  31. Flanagan, J. and H. Singh. 2006. Microemulsions: A potential delivery system for bioactives in food. Crit. Rev. Food Sci. Nutr. 46:221-237.
  32. FSAI. 2008. The relevance for food safety of applications of nanotechnology in the food and feed industries. Food Safety Authority of Ireland. Dublin, Ireland. pp. 11.
  33. Gaskell, G., M. W. Bauer, J. Durant, and N. C. Allum. 1999. Worlds apart? The reception of genetically modified foods in Europe and the US. Science, 285:384-387.
  34. Gaskell, G., T. T. Eyck, J. Jackson, and G. Veltri. 2005. Imagining nanotechnology: cultural support for technological innovation in Europe and the United States. Public Underst. Sci. 14:81-90.
  35. Gurr, J. R., A. S. Wang, C. H. Chen, and K. Y. Jan. 2005. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology. 213:66-73.
  36. Graveland-Bikker, J. F. and C. G. de Kruif. 2006. Unique milk protein based nanotubes: food and nanotechnology meet. Trends Food Sci. Technol. 17:196-203.
  37. Gruere, G. P. 2012. Implications of nanotechnology growth in food and agriculture in OECD countries. Food Policy 37:191-198.
  38. Gupta, A. K. and M. Gupta. 2005. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995-4021.
  39. He, C. X., Z. G. He, and J. Q. Gao. 2010. Microemulsions as drug delivery systems to improve the solubility and the bioavailability of poorly water-soluble drugs. Expert Opin. Drug Deliv. 7:445-460.
  40. Helmut Kaiser Consultancy. 2009. Study: nanotechnology in food and food processing industry worldwide 2003-2006-2010-2015. HKC. Accessed February 6, 2014.
  41. HOL (House of Lords). 2010. Nanotechnologies and food, volume I: Report. House of Lords, Science and technology committee, 1st report of Session 2009-2010, HL Paper 22-I, the Stationery Office, London, USA. pp. 12, 51-52.
  42. Huang, Q., H. Yu, and Q. Ru. 2010. Bioavailability and delivery of nutraceuticals using nanotechnology. J. Food Sci. 75:50-57.
  43. Huang, Y., S. Chen, X. Bing, C. Gao, T. Wang, and B. Yuan. 2011. Nanosilver migrated into food-simulating solutions from commercially available food fresh containers. Packaging Technol. Sci. 24:291-297.
  44. IFIC (International Food Information Council). 2006. Functional foods. Accessed March 14, 2014.
  45. Kim, Y. S., J. S. Kim, H. S. Cho, D. S. Rha, J. M. Kim, J. D. Park, B. S Choi, R. Lim, H. K. Chang, Y. H. Chung, I. H. Kwon, J. Jeong, B. S. Han, and I. J. Yu. 2008. Twenty eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal. Toxicol. 20:575-583.
  46. Joe, M. M., P. S. Chauhan, K. Bradeeba, C. Shagol, P. K. Sivakumaar, and T. Sa. 2012. Influence of sunflower oil based nanoemulsion (AUSN-4) on the shelf life and quality of Indo-Pacific king mackerel (Scomberomorus guttatus) steaks stored at $20^{\circ}C$. Food Control 23:564-570.
  47. Kotov, N. A. 2003. Layer-by-layer assembly of nanoparticles and nanocolloids: intermolecular interactions, structure and materials perspective. In: Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials (Eds. G. Decher and J. B. Schlenoff). Wiley-VCH, Weinheim, Germany. pp. 207-243.
  48. Kim, J. S., E. Kuk, K. N. Yu, J. H. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, C. Y. Hwang, Y. K. Kim, Y. S. Lee, D. H. Jeong, and M. H. Cho. 2007. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 3: 95-101.
  49. Kuzma, J., J. Romanchek, and A. Kokotovich. 2008. Upstream oversight assessment for agrifood nanotechnology: A case studies approach. Risk Anal. 28:1081-1098.
  50. Lee, K. T. 2010. Quality and safety aspects of meat products as affected by various physical manipulations of packaging materials. Meat Sci. 86:138-150.
  51. Linton, J. D. and S. T. Walsh. 2008. A theory of innovation for process-based innovations such as nanotechnology. Technol. Forecast. Soc. Change 75:583-594.
  52. Lok, C. N., C. M. Ho, R. Chen, Q. Y. He, W. Y. Yu, H. Sun, P. K. Tam, J. F. Chiu, and C. M. Che. 2007. Silver nanoparticles: partial oxidation and antibacterial activities. J. Biol. Inorg. Chem. 12:527-534.
  53. McClements, D. J. and J. Rao. 2011. Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit. Rev. Food Sci. Nutr. 51:285-330.
  54. Lovenstam, G., H. Rauscher, G. Roebben, B. Sokull Kluttgen, N. Gibson, J. P. Putaud, and H. Stamm. 2010. Considerations on a Definition of Nanomaterial for Regulatory Purposes. Joint Research Center of the European Commission (JRC) Reference Reports. Publication Office of the European Union, Luxembourg. pp. 17-18.
  55. Lovric, J., H. S. Bazzi, Y. Cuie, G. R. A. Fortin, F. M. Winnik, and D. Maysinger. 2005. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J. Mol. Med. 83:377-385.
  56. Marra, J., M. Voetz, and H. J. Kiesling. 2010. Monitor for detecting and assessing exposure to airborne nanoparticles. J. Nanopart. Res. 12:21-37.
  57. Mills, A. 2005. Oxygen indicator and intelligent inks for packaging food. Chem. Soc. Rev. 34: 1003-1011.
  58. Moller, M., U. Eberle, A. Hermann, K. Moch, and B. Stratmann. 2009. Nanotechnology in the food sector. Zurich: TA-SWISS. pp. 47.
  59. Moraru, C. I., C. P. Panchapakesan, Q. Huang, P. Takhistov, S. Liu, and J. L. Kokini. 2003. Nanotechnology: A new frontier in food science. Food Technol. 57:24-29.
  60. Moraru, C. I., Q. Huang, P. Takhistov, H. Dogan, and J. L. Kokini. 2009. Food nanotechnology: current developments and future prospects. Global. Issues. Food Sci. Technol. 21:369-399.
  61. Morones, J. R., J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, and M. J. Yacaman. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346-2353.
  62. O'Brien, N. and E. Cummins. 2010. Ranking initial environmental and human health risk resulting from environmentally relevant nanomaterials. J. Environ. Sci. Health., Part A. 45: 992-1007.
  63. Neo, Y. P., S. Ray, J. Jin, M. Gizdavic-Nikolaidis, M. K. Nieuwoudt, D. Liu, and S. Y. Quek. 2013. Encapsulation of food grade antioxidant in natural biopolymer by electrospinning technique: A physicochemical study based on zein-gallic acid system. Food Chem. 136:1013-1021.
  64. NSI. 2012. NSI white paper: Nanotechnology for sensors and sensors for Nanotechnology: Improving and protecting health, safety, and the environment, Nanotechnology Signature Initiative. NSI white paper 1-11.
  65. NSI. 2013. Nanotechnology for sensors and sensors for Nanotechnology: Improving and protecting health, safety, and the environment. Nanotechnology Signature Initiative. Accessed March 17, 2014.
  66. Okutan, N., P. Terzi, and F. Altay. 2014. Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocoll. 39:19-26.
  67. Olmedilla-Alonsoa, B., F. Jimenez-Colmeneroa, and F. J. Sanchez-Muniz. 2013. Development and assessment of healthy properties of meat and meat products designed as functional foods. Meat Sci. 95:919-930.
  68. Ozimek, L., E. Pospiech, and S. Narine. 2010. Nanotechnology is food and meat processing. Acta Sci. Pol. Technol. Aliment. 9:401-412.
  69. Panea, B., G. Ripoll, J. Gonzalez, A. Fernandez-Cuello, and P. Alberti. 2013. Effect of nanocomposite packaging containing different proportions of ZnO and Ag on chicken breast meat quality. J. Food Eng. 123:104-112.
  70. Picouet, P. A., A. Fernandez, C. E. Realini, and E. Lloret. 2014. Influence of PA6 nanocomposite films on the stability of vacuum-aged beef loins during storage in modified atmospheres. Meat Sci. 96:574-580.
  71. Semo, E., E. Kesselman, D. Danino, and Y. D. Livney. 2007. Casein micelle as a natural nano-capsular vehicle for nutraceuticals. Food Hydrocoll. 21:936-942.
  72. Ravichandran, M., N.S. Hettiarachchy, V. Ganesh, S.C. Ricke and S. Surendra. 2011. Enhancement of antimicrobial activities of naturally occurring phenolic compounds by nanoscale delivery against Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella Typhimurium in broth and chicken meat system. J. Food Safety. 31:462-471.
  73. Rhim, J. W., H. M. Park, and C. S. Ha. 2013. Bio-nanocomposites for food packaging applications. Prog. Polym. Sci. 38:1629-1652.
  74. Salminen, H., K. Herrmann, and J. Weiss. 2013. Oil-in-water emulsions as a delivery system for n-3 fatty acids in meat products. Meat Sci. 93:659-667.
  75. Sharma, V., R. K. Shukla, N. Saxena, D. Parmar, M. Das, and A. Dhawan. 2009. DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol. Lett. 185:211-218.
  76. Shibata, T. 2002. Method for producing green tea in microfine powder. United States Patent US6416803B1.
  77. Shimoni, E. 2009. Nanotechnology for foods: delivery systems. In:IUFoST World Congress Book: Global Issues in Food Sci. Technol. pp. 411-424.
  78. Siegrist, M., M. E. Cousin, H. Kastenholz, and A. Wiek. 2007. Public acceptance of nanotechnology foods and food packaging: The influence of affect and trust. Appetite 49:459-466.
  79. Siegrist, M., N. Stampfli, H. Kastenholz, and C. Keller. 2008. Perceived risks and perceived benefits of different nanotechnology foods and nanotechnology food packaging. Appetite 51:283-290.
  80. Silvestre, C., D. Duraccio, and S. Cimmino. 2011. Food packaging based on polymer nanomaterials. Prog. Polym. Sci. 36:1766-1782.
  81. Tan, C. P. and M. Nakajima. 2005. Beta Carotene nanodispersions:Preparation, characterization and stability evaluation. Food Chem. 92:661-671.
  82. Simon, P., Q. Chaudhry, and D. Bakos. 2008. Migration of engineered nanoparticles from polymer packaging to food - a physicochemical view. J. Food Nutr. Res. 47:105-113.
  83. Sozer, N. and J. L. Kokini. 2009. Nanotechnology and its applications in the food sector. Trends Biotechnol. 27:82-89.
  84. Spence, A. and E. Townsend. 2006. Examining consumer behavior toward genetically modified (GM) food in Britain. Risk Anal. 26:657-670.
  85. Troy, D. J. and J. P. Kerry. 2010. Consumer perception and the role of science in the meat industry. Meat Sci. 86:214-226.
  86. Ultrafine and nanoparticle monitors. 2014. Philips Co. Inc. Accessed March 13, 2014.
  87. Underwood, C. and A. W. V. Eps. 2012. Nanomedicine and veterinary science: The reality and the practicality. Vet. J. 193:12-23.
  88. USDA. 2008. Food safety information: additives in meat and poultry products. United States Department of Agriculture. Accessed November 3, 2014.
  89. Villamizar, R., A. Maroto, R. F. Xavier, I. Inza, and M. Figueras. 2008. Fast detection of Salmonella Infantis with carbon analytical nanotechnology for food analysis 17 nanotube field effect transistors. Biosens Bioelectron. 24:279-283.
  90. Weiss, J., P. Takhistov, and J. Mcclements. 2006. Functional materials in food nanotechnology. J. Food Sci. 71:107-116.
  91. Weiss, J., M. Gibis, V. Schuh, and H. Salminen. 2010. Advances in ingredient and processing systems for meat and meat products. Meat Sci. 86:196-213.
  92. Yusop, S. M., M. G. O'Sullivan, M. Preuss, H. Weber, J. F. Kerry, and J. P. Kerry. 2012. Assessment of nanoparticle paprika oleoresin on marinating performance and sensory acceptance of poultry meat. LWT Food Sci. Technol. 46: 349-355.
  93. Yam, K. L., P. T. Takhistov, and J. Miltz. 2005. Intelligent packaging: Concepts and applications. J. Food Sci. 70:1-10.
  94. Yang, M, Y. Kostov, and A. Rasooly. 2008. Carbon nanotubes based optical immunodetection of Staphylococcal Enterotoxin B (SEB) in food. Int. J. Food Microbiol. 127:78-83.
  95. Young, J. F., M. Therkildsen, B. Ekstrand, B. N. Che, M. K. Larsen, N. Oksbjerg, and J. Stagsted. 2013. Novel aspects of health promoting compounds in meat. Meat Sci. 95:904-911.
  96. Zhang, W., J. Zhang, Q. Jiang, and W. Xia. 2013. The hypolipidemic activity of chitosan nanopowder prepared by ultrafine milling. Carbohydr. Polym. 95:487-491.
  97. Zhao, X., Z. Yang, G. Gai, and Y. Yang. 2009. Effect of superfine grinding on properties of ginger powder. J. Food Eng. 91:217-222.
  98. Zhu, K., S. Huang, W. Peng, H. Qian, and H. Zhou. 2010. Effect of ultrafine grinding on hydration and antioxidant properties of wheat bran dietary fiber. Food Res. Int. 43:943-948.

Cited by

  1. Microparticle of drug and nanoparticle: a biosynthetic route vol.3, pp.5, 2015,
  2. Nanosensors for a Monitoring System in Intelligent and Active Packaging vol.2016, pp.1687-7268, 2016,
  3. Intelligent Packaging Systems: Sensors and Nanosensors to Monitor Food Quality and Safety vol.2016, pp.1687-7268, 2016,
  4. State of art of nanotechnology applications in the meat chain: A qualitative synthesis pp.1549-7852, 2016,
  5. New Trends in Beverage Packaging Systems: A Review vol.1, pp.4, 2015,
  6. Smart nanopackaging for the enhancement of food shelf life pp.1610-3661, 2018,
  7. The Use of Carbon Nanoparticles for Inkjet-Printed Functional Labels for Smart Packaging vol.2018, pp.1687-4129, 2018,
  8. Nanotechnology and food processing: between innovations and consumer safety pp.1542-8044, 2018,
  9. Ultrafine Grinding a Promising Method for Improving the Total Dietary Fiber Content and Physico-Chemical Properties of Potato Peel Waste pp.1877-265X, 2019,