DOI QR코드

DOI QR Code

Synthesis and characterization Au doped TiO2 film for photocatalytic function

  • Son, Jeong-Hun ;
  • Bae, Byung-Seo ;
  • Bae, Dong-Sik
  • Received : 2015.11.05
  • Accepted : 2015.11.27
  • Published : 2015.12.31

Abstract

Au doped $TiO_2$ nanoparticles have been synthesized using a reverse micelle technique combined with metal alkoxide hydrolysis and condensation. Au doped $TiO_2$ was coated with glass substrate. The size of the particles and thickness of the coating can be controlled by manipulating the relative rates of the hydrolysis and condensation reaction of TTIP within the micro-emulsion. The average size of synthesized Au doped $TiO_2$ nanoparticle was about in the size range of 15 to 25 nm and the Au particles formed mainly the range of 2 to 10 nm in diameter. The effect of synthesis parameters, such as the molar ratio of water to TTIP and the molar ratio of water to surfactant, are discussed. The synthesized nanopaticles were coated on glass substrate by a spin coating process. The thickness of thin film was about 80 nm. The degradation of MB on a $TiO_2$ thin film was enhanced over 20 % efficiency by the incorporation of Au.

Keywords

Au doped $TiO_2$;Photocatalyst;Thin film;Reverse Micelle and Sol-Gel Process

References

  1. A. Fujishima and X. Zhang, ''Titanium dioxide photocatalysis: Present situation and future approaches'', C. R. Chim. 9 (2006) 750. https://doi.org/10.1016/j.crci.2005.02.055
  2. X. Chen and S.S. Mao, ''Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications'', Chem. Rev. 107 (2007) 2891. https://doi.org/10.1021/cr0500535
  3. J.L. Gole, J.D. Stout, C. Burda, Y. Lou and X. Chen, "Highly efficient formation of visible light tunable $TiO_{2-x}N_x$ Photocatalysts and Their Transformation at the Nanoscale", J. Phys. Chem. B 108 (2004) 1230. https://doi.org/10.1021/jp030843n
  4. A. Mills, G. Hill, S. Bhopal, I.P. Parkin and S.A. O'Neil, "Thick titanium dioxide films for semiconductor photocatalysis", J. Photochem. Photobiol., A 160 (2003) 185. https://doi.org/10.1016/S1010-6030(03)00206-5
  5. G.E. Brown, V.E. Henrich, W.H. Casey, D.L. Clark, C. Eggleston, A. Femly, D.W. Goodman, M. Gratzel, G. Macial, M.I. McGarthy, K.H. Nealson, D.A. Sverjensky, M.F. Toney and J.M. Zachara, "Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms", Chem. Rev. 99 (1999) 77. https://doi.org/10.1021/cr980011z
  6. S.A. Bilmes, P. Mandelbaum, F. Alvarez and N.M. Victoria, "Surface and electronic structure of titanium dioxide photocatalysts", J. Phys. Chem. 104 (2000) 9851. https://doi.org/10.1021/jp0010132
  7. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, "Visible-light photocatalysis in nitrogen-doped titanium oxides", Science 293 (2001) 269. https://doi.org/10.1126/science.1061051
  8. Y. Sakatani, K. Okusako, H. Koike and H. Ando, "Development of $TiO_2$ photocatalysis with visible light response", Photocatalysis 4 (2002) 51.
  9. H. Irie, Y. Watanabe and K. Hashimoto, "Nitrogen-concentration dependence on photocatalytic activity of $TiO_{2-x}N_x$ Powders", J. Phys. Chem. B 107 (2003) 5483. https://doi.org/10.1021/jp030133h
  10. K. Kobayakawa, Y. Murakami and Y. Sato, "Visiblelight active N-doped $TiO_2$ prepared by heating of titanium hydroxide and urea", J. Photochem. Photobiol., A 170 (2005) 177. https://doi.org/10.1016/j.jphotochem.2004.07.010
  11. D. Wang, H. Lin and C. Yen, "Influence of metal plasma ion implantation on photo-sensitivity of anatase $TiO_2$ thin films", Thin Solid Films 515 (2006) 1047. https://doi.org/10.1016/j.tsf.2006.07.070
  12. M. Anpo, "Photocatalysis on titanium oxide catalysts: Approaches in achieving highly efficient reactions and realizing the use of visible light", Catal. Surv. Jpn. 1 (1997) 169. https://doi.org/10.1023/A:1019024913274
  13. J. Hodak, C. Quinteros, M.I. Litter and E. San Roman, "Sensitization of $TiO_2$ with phthalocyanines. Part 1. Photo-oxidations using hydroxoaluminium tricarboxymonoamid-ephthalocyanine adsorbed on $TiO_2$", J. Chem. Soc., Faraday Trans. 92 (1996) 5081. https://doi.org/10.1039/ft9969205081
  14. Y. Cho, C.H. Lee, T. Hyeon and H.I. Lee, "Visible light-induced degradation of carbon tetrachloride on dye-sensitized $TiO_2$", Environ. Sci. Technol. 35 (2001) 966. https://doi.org/10.1021/es001245e
  15. D. Chatterjee and A. Mahata, "Demineralization of organic pollutants on the dye modified $TiO_2$ semiconductor particulate system using visible light", Appl. Catal., B 33 (2001) 119. https://doi.org/10.1016/S0926-3373(01)00170-9
  16. E. Bae, W. Choi, J. Park, H.S. Shin, S.B. Kim and J.S. Lee, "Effects of surface anchoring groups (carboxylate vs phosphonate) in ruthenium-complex-sensitized $TiO_2$ on visible light reactivity in aqueous suspensions", J. Phys. Chem. B 108 (2004) 14093. https://doi.org/10.1021/jp047777p
  17. H. Fu, L. Zhang, S. Zhang, Y. Zhu and J. Zhao, "Electron spin resonance spin-trapping detection of radical intermediates in N-doped $TiO_2$-assisted photodegradation of 4-chlorophenol", J. Phys. Chem. B. 110 (2006) 3061. https://doi.org/10.1021/jp055279q
  18. K.W. Park, "Influence of Pt nanocrystallinity on electrochromism of $TiO_2$", Inorg. Chem. 44 (2005) 3190. https://doi.org/10.1021/ic049021a
  19. J. Sa, M. Fernandez-Garcia and J.A. Anderson, "Photoformed electron transfer from $TiO_2$ to metal clusters", Catal. Commun. 9 (2008) 1991. https://doi.org/10.1016/j.catcom.2008.03.041
  20. Y.M. Tricot and J.H. Fendler, "In situ generated colloidal semiconductor CdS particles in dihexadecyl phosphate vesicles: Quantum size and asymmetry effects", J. Phys. Chem. 90 (1986) 3369. https://doi.org/10.1021/j100406a013
  21. N. Ichinose, Y. Ozaki and S. Kashu, "Superfine particle technology", Springer-Verlag, New York (1988) 27.
  22. D.S. Bae, K.S. Han and J.H. Adair, "Synthesis of nanosize $SiO_2$ particles by a reverse micelle and sol-gel processing", J. Korean Cryst. Growth Cryst. Technol. 11 (2001) 67.
  23. J.W. Eun, D.K. Oh, K.J. Kim, T.U. Hong, S.M. Jeong, B.G. Choi and K.B. Shim, "Thermal stabilizing effect of $Yb^{3+}$ $Er^{3+}$ codoping into $TiO_2$ powder preparedby sol-gel method and its up conversion characteristic", J. Korean Cryst. Growth Cryst. Technol. 20 (2010) 173. https://doi.org/10.6111/JKCGCT.2010.20.4.173
  24. J.H. Son, H.Y. Park, D.P. Kang and D.S. Bae, "Synthesis and characterization of Ag/Pd doped $SiO_2$ nanoparticles by a reverse micelle and sol-gel processing" Colloids and Surfaces A: Physicochem. Eng. 313 (2008) 105.
  25. T. Li, J.J. Mecholsky, D.R. Talham and J.H. Adair, "Preparation of $Ag/SiO_2$ nanosize composites by a reverse micelle and sol-gel technique", Langmuir 15 (1999) 4328. https://doi.org/10.1021/la970801o
  26. S.W. Zhang, B.P. Zhang, S. Li, X.Y. Li and Z.C. Huang, "SPR enhanced photocatalytic properties of Au-dispersed amorphous $BaTiO_3$ nanocomposite thin films", J. Alloy Comp. 654 (2016) 112. https://doi.org/10.1016/j.jallcom.2015.09.053
  27. N. Negishi and K. Takeuchi, "Structural changes of transparent $TiO_2$ thin films with heat treatment", Mater. Lett. 38 (1999) 150. https://doi.org/10.1016/S0167-577X(98)00150-5
  28. J.H. Ryu, C.S. Lim, W.C. Oh and K.H. Auh, "Preparation of $TiO_2$ nanopowder using titanium terta-isopropoxide and effect of pH", J. Korean Cryst. Growth Cryst. Technol. 12 (2002) 91.
  29. Y. Zheng, L. Zheng, Y. Zhan, X. Lin, Q. Zheng and K. Wei, "Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis", Inorg. Chem. 46 (2007) 6980. https://doi.org/10.1021/ic700688f
  30. T. Hirakawa and P.V. Kamat, "Charge separation and catalytic activity of Ag@$TiO_2$ core-shell composite clusters under UV-irradiation", J. Am. Chem. Soc. 127 (2005) 3928. https://doi.org/10.1021/ja042925a
  31. S. Zhu, S. Liang, Q. Gu, L. Xie, J. Wang, Z. Ding and P. Liu, "Effect of Au supported $TiO_2$ with dominant exposed {0 0 1} facets on the visible-light photocatalytic activity", Appl. Catal. B Environ. 119 (2012) 146.

Acknowledgement

Supported by : National Research Foundation of Korea