DOI QR코드

DOI QR Code

Characteristics of Thermodynamic Performance of Heat Exchanger in Organic Rankine Cycle Depending on Pinch Temperature Difference

유기랭킨사이클에서 핀치온도차의 변화에 따른 열교환기의 열역학적 성능특성

  • Received : 2015.10.01
  • Accepted : 2015.12.30
  • Published : 2015.12.30

Abstract

In this paper a performance analysis is carried out based on the first and second laws of thermodynamics for heat exchanger in organic Rankine cycle (ORC) for the recovery of low-temperature finite thermal energy source. In the analysis, effects of the selection of working fluid and pinch temperature difference are investigated on the performance of the heat exchanger including the effectiveness of the heat exchanger, exergy destruction, second-law efficiency, number of transfer unit (NTU), and pinch point. The temperature distribution are shown depending on the working fluids and the pinch temperature difference. The results show that the performance of the heat exchanger depends on the pinch temperature difference sensitively. As the pinch temperature increases, the exergy destruction in the evaporator increases but the effectiveness, second law efficiency and NTU decreases.

Keywords

Low-temperature heat source;Organic Rankine Cycle;Exergy;Working fluid;Pinch temperature difference

References

  1. K. H. Kim, J. Y. Jin, and H. J. Ko, "Performance analysis of a vapor compression cycle driven by organic Rankine cycle", Trans. of the Korean Society of Hydrogen Energy, Vol. 23, 2012, pp. 521-529. https://doi.org/10.7316/KHNES.2012.23.5.521
  2. K. H. Kim, and H. Perez-Blanco, "Performance Analysis of a Combined Organic Rankine Cycle and Vapor Compression Cycle for Power and Refrigeration Cogeneration", Appl. Therm. Eng., Vol. 91, 2015, pp. 964-974. https://doi.org/10.1016/j.applthermaleng.2015.04.062
  3. K. Kim, U. Lee, C. Kim, and C. Han, "Design and optimization of cascade organic Rankine cycle for recovering cryogenic energy from liquefied natural gas using binary working fluid", Energy, Vol. 88, 2015, pp. 304-313. https://doi.org/10.1016/j.energy.2015.05.047
  4. H. Y. Lee, and K. H. Kim, "Energy and Exergy Analyses of a Combined Power Cycle Using the Organic Rankine Cycle and the Cold Energy of Liquefied Natural Gas", Entropy, Vol. 17, 2015, pp. 6412-6432. https://doi.org/10.3390/e17096412
  5. K. H. Kim, H. J. Ko, and K. Kim, "Assessment of pinch point characteristics in heat exchangers and condensers of ammonia-water based power cycles", App. Energy, Vol. 113, 2014, pp. 970-981. https://doi.org/10.1016/j.apenergy.2013.08.055
  6. K. H. Kim, K. Kim, and H. J. Ko, "Entropy and Exergy Analysis of a Heat Recovery Vapor Generator for Ammonia-Water Mixtures", Entropy, Vol. 16, 2014, pp. 2056-2070. https://doi.org/10.3390/e16042056
  7. T. Yang, G. J. Chen, and T. M. Gou, "Extension of the Wong-Sandler mixing rule to the three-parameter Patel-Teja equation of state: Application up to the near-critical region", Chem. Eng. J., Vol. 67, 1997, pp. 27-36. https://doi.org/10.1016/S1385-8947(97)00012-0
  8. J. Gao, L. D. Li, and S. G. Ru, "Vapor-liquid equilibria calculation for asymmetric systems using Patel-Teja equation of state with a new mixing rule", Fluid Phase Equilibrium, Vol. 224, 2004, pp. 213-219. https://doi.org/10.1016/j.fluid.2004.05.007
  9. C. L. Yaws, "Chemical Properties Handbook", McGraw-Hill, New York, NY, USA, 1999.
  10. H. Vidal, and S. Colle, "Simulation and economic optimization of a solar assisted combined ejector-vapor compression cycle for cooling applications", Applied Thermal Eng, Vol. 30, 2010, pp. 478-486. https://doi.org/10.1016/j.applthermaleng.2009.10.008
  11. H. Wang, R. Oeterson, and T. Herron, "Design study of configurations on system COP for a combined ORC and VCC", Energy, Vol. 36, 2011, pp. 4809-4820. https://doi.org/10.1016/j.energy.2011.05.015
  12. K. H. Kim, and K. C. Kim, "Thermodynamic performance analysis of a combined power cycle using low grade heat source and LNG cold energy", Appl. Therm. Eng., Vol. 70, 2014, pp. 50-60. https://doi.org/10.1016/j.applthermaleng.2014.04.064
  13. J. Bao, and L. Zhao, "A review of working fluid and expander selections for organic Rankine cycle", Renew. Sustain. Energy Rev., Vol. 24, 2013, pp. 325-342. https://doi.org/10.1016/j.rser.2013.03.040
  14. S. Lecompte, H. Huisseune, M. van den Broek, B. Vanslambrouck, and N. De Paepe, "Review of organic Rankine cycle (ORC) architectures for waste heat recovery", Renew. Sustain. Energy Rev., Vol. 47, 2015, pp. 448-461. https://doi.org/10.1016/j.rser.2015.03.089
  15. K. H. Kim, and Y. G. Kim, "Performance Characteristics of Combined Heat and Power Generation with Series Circuit Using Organic Rankine Cycle", Trans. of the Korean Hydrogen and New Energy Society, Vol. 22, 2011, pp. 699-705.
  16. K. H. Kim, and Y. G. Kim, "Effects of Internal Heat Exchanger on Performance of Organic Rankine Cycles", Trans. of the Korean Hydrogen and New Energy Society, Vol. 22, pp. 402-408.
  17. K. H. Kim, Y. G. Kim, and S. H. Park, "Characteristics of Thermodynamic Performance of Organic Flash Cycle (OFC)", Trans. of the Korean Hydrogen and New Energy Society, Vol. 24, 2013, pp. 91-97. https://doi.org/10.7316/KHNES.2013.24.1.091
  18. U. Dresher, and D. Brueggemann, "Fluid selection for the Organic Rankine Cycle (ORC) in biomass power and heat plants", Appl. Therm. Eng., Vol. 27, 2007, pp. 223-228. https://doi.org/10.1016/j.applthermaleng.2006.04.024
  19. F, Heberle, and D. Brueggemann, "Exergy based fluid selection for a geothermal organic Rankine cycle for combined heat and power generation", Appl. Therm. Eng., Vol. 30, 2010, pp. 1326-1332. https://doi.org/10.1016/j.applthermaleng.2010.02.012
  20. T. C. Hung, S. K. Wang, C. H. Guo, B. S. Pei, and K. F. Tsai, "A study of organic working fluids on system efficiency of an ORC using low-grade energy sources", Energy, Vol. 35, 2010, pp. 1403-1411. https://doi.org/10.1016/j.energy.2009.11.025
  21. B. F. Tchanche, G. Papadakis, and A. Frangoudakis, "Fluid selection for a low- temperature solar organic Rankine cycle", Applied Thermal Eng, Vol. 29, 2009, pp. 2468-2476. https://doi.org/10.1016/j.applthermaleng.2008.12.025
  22. Y. Dai, J. Wang, and L. Gao, "Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery", Energy Convrs. Mgmt., Vol. 50, 2009, pp. 576-582. https://doi.org/10.1016/j.enconman.2008.10.018
  23. D. Manolakos, G. Papadakis, S. Kyritsis, and K. Bouzianas, "Experimental evaluation of an autonomous low-temperature solar Rankine cycle system for reverse osmosis desalination", Desalination, Vol. 203, 2007, pp. 366-374. https://doi.org/10.1016/j.desal.2006.04.018
  24. D. W. Sun, "Solar powered combined ejector-vapour compression cycle for air conditioning and refrigeration", Energy Conversion and Management, Vol. 38, 1997, pp. 479-491. https://doi.org/10.1016/S0196-8904(96)00063-5
  25. International Energy Agency (IEA), "World energy outlook 2013", 2013.
  26. V. A. Prisyazhnink, "Alternative tends in development of thermal power plant", Applied Ther. Eng, Vol. 28, 2008, pp. 190-194. https://doi.org/10.1016/j.applthermaleng.2007.03.025
  27. K. H. Kim, C. H. Han, and K. Kim, "Effects of ammonia concentration on the thermodynamic performances of ammonia-water based power cycles", Thermochimica Acta, Vol. 530, 2012, pp. 7-16. https://doi.org/10.1016/j.tca.2011.11.028

Acknowledgement

Supported by : 금오공과대학교