DOI QR코드

DOI QR Code

아임계수를 이용한 분리대두단백질의 가수분해

Hydrolysis of Isolate Soybean Protein Using Subcritical Water

  • 황윤희 ((주)바이오벤 부설연구소) ;
  • 조형용 (차의과학대학교 식품생명공학과) ;
  • 김고래 ((주)바이오벤 부설연구소) ;
  • 이석훈 ((주)바이오벤 부설연구소) ;
  • 최미정 (건국대학교 생명자원식품공학과) ;
  • 신정규 (전주대학교 한식조리학과)
  • 투고 : 2015.11.20
  • 심사 : 2015.12.15
  • 발행 : 2015.12.31

초록

최근 아임계수 가수분해는 전통적인 단백질 가수분해법의 대체방법으로서 관심을 받고 있으며, 고단백질원으로부터 아미노산을 회수하는데 효과적인 공정이 될 수 있을 것으로 기대되고 있다. 본 연구에서는 대표적인 식물성 단백질원인 분리대두단백질을 선택하여 대두단백질의 아임계수 가수분해에서 가장 중요한 인자인 대두단백질의 초기농도, 반응온도, 반응시간의 영향을 연구하여 대두단백질로부터 아미노산을 생산할 수 있는 조건을 최적화하고자 하였다. 대두단백질 수열분해액의 실온에서 pH는 $200^{\circ}C$에서 20분간 처리했을 때 pH는 7.3으로 중성이었으나 온도가 증가할수록 pH가 증가하여 $270^{\circ}C$에서 10.3으로 알카리성을 나타내었다. 반응온도 $220^{\circ}C$까지는 수열분해액은 분산상태를 이루었으나 $230^{\circ}C$ 이상에서는 분산상태가 파괴되고 단백질이 분리되어 하부에 침강층을 이루었으며 $240^{\circ}C$ 이상에서는 이 단백질층이 현저히 감소하였다. 반응온도는 $250^{\circ}C$, 반응시간 20분으로 고정한 조건에서 대두현탁액의 초기농도가 수열분해에 미치는 영향을 살펴본 결과 초기농도 10% (w/v)일 때 가수분해도 및 아미노산 수율이 각각 16.2% 및 22.3%로 가장 우수하였다. 또한 반응온도 $200-220^{\circ}C$ 범위에서는 가수분해도와 아미노산 수율은 서서히 증가하였으나 $230-250^{\circ}C$ 영역에서는 급격히 증가하였으며 $250^{\circ}C$ 이상에서는 다시 완만히 증가하는 경향을 보여 $250^{\circ}C$ 이상에서 아미노산 분해속도는 단백질 분해속도를 초과하였다. 표면반응분석법으로 예측한 결과 $268^{\circ}C$, 처리시간 35분에서 최적 아미노산 수율 43.5%를 얻을 수 있었다.

과제정보

연구 과제 주관 기관 : 농림수산식품부

참고문헌

  1. Gonzalez-Tello P, Camacho F, Jurado E, Paez MP, Guadix EM. Enzymatic hydrolysis of whey proteins. II: Molecular-weight range. Biotechnol. Bioeng. 44: 529-532 (1994) https://doi.org/10.1002/bit.260440416
  2. Frokjaer S. Use of hydrolysates for protein supplementation. Food Technol. 48: 86-88 (1994)
  3. Akiya N, Savage PE. Roles of water for chemical reactions in high-temperature water. Chem. Rev. 102: 2725-2750 (2002) https://doi.org/10.1021/cr000668w
  4. Kruse A, Dinjus E. Hot compressed water as reaction medium and reactant. Properties and synthesis reactions. J. Supercrit. Fluid. 39: 362-380 (2007) https://doi.org/10.1016/j.supflu.2006.03.016
  5. Khuwijitjaru P, Anantanasuwong S, Adachi S. Emulsifying and foaming properties of defatted soy meal extracts obtained by sub-critical water treatment. Int. J. Food Prop. 14: 9-16 (2011) https://doi.org/10.1080/10942910903112118
  6. Wiboonsirikul J, Kimura Y, Kadota M, Morita H, Tsuno T, Adachi S. Properties of extracts from defatted rice bran by its subcititcal water treatment. J. Agr. Food Chem. 55: 8759-8765 (2007) https://doi.org/10.1021/jf072041l
  7. Espinoza AD, Morawicki RO. Effect of additives on subcritical water hydrolysis of whey protein isolate. J. Agr. Food Chem. 60: 5250-5256 (2012) https://doi.org/10.1021/jf300581r
  8. Cheng H, Zhu X, Zhu C, Qian J, Zhu N, Zhao L, Chen J. Hydrolysis technology of biomass waste to produce amino acids in sub-critical water. Bioresource Technol. 99: 3337-3341 (2008) https://doi.org/10.1016/j.biortech.2007.08.024
  9. Watchararuji K, Goto M, Sasaki M, Shotipruk A. Value-added subcritical water hydrolysate from rice bran and soybean meal. Bioresource Technol. 99: 6207-6213 (2008) https://doi.org/10.1016/j.biortech.2007.12.021
  10. Pinkowska H, Oliveros E. Application of the doehlert matrix for the determination of the optimal conditions of hydrolysis of soybean protein in subcritical water. Ind. Eng. Chem. Res. 53: 1320-1326 (2014) https://doi.org/10.1021/ie403451b
  11. AOAC. Official Methoeds of Analysis of AOAC Intl. 15th ed. Method 930.15. Association of Official Analytical Chemists, Arlington, VA, USA (1990)
  12. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265-275 (1951)
  13. Moore S, Stein WH. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J. Biol. Chem. 211: 907-913 (1954)
  14. Nielsen PM, Petersen D, Dambmann C. Improved method for determining food protein degree of hydrolysis. J. Food Sci. 66: 642-646 (2001) https://doi.org/10.1111/j.1365-2621.2001.tb04614.x
  15. Chen L, Chen J, Ren J, Zhao M. Modifications of soy protein isolates using combined extrusion pre-treatment and controlled enzymatic hydrolysis for improved emulsifying properties. Food Hydrocolloid. 25: 887-897 (2011) https://doi.org/10.1016/j.foodhyd.2010.08.013
  16. Sohn MG, Ho CT. Ammonia generation during thermal degradation of amino acids. J. Agr. Food Chem. 43: 3001-3003 (1995) https://doi.org/10.1021/jf00060a001
  17. Zhang QT, Tu ZC, Wang H, Huang XO, Fan LL, Bao ZY, Xiao H. Functional properties and structure changes of soybean protein isolate after subcritical water treatment. J. Food Sci. Technol. 52: 3412-3421 (2015)
  18. Adler-Nissen J, Eriksen S, Olsen HS. Improvement of the functionality of vegetable proteins by controlled enzymatic hydrolysis. Plant Food Hum. Nutr. 32: 411-423 (1983) https://doi.org/10.1007/BF01091198
  19. Sunphorka S, Chavasiri W, Oshima Y, Ngamprasertsith S. Kinetic studies on rice bran protein hydrolysis in subcritical water. J. Supercrit. Fluid. 65: 54­60 (2012)
  20. Rogalinski T, Herrmann S, Brunner G. Production of amino acids from bovine serum albumin by continuous sub-critical water hydrolysis. J. Supercrit. Fluid. 36: 49-58 (2005) https://doi.org/10.1016/j.supflu.2005.03.001
  21. Zhu G, Zhu X, Fan Q, Liu X, Shen Y, Jiang J. Study on production of amino acids from bean dregs by hydrolysis in sub-critical water. Chinese J. Chem. 28: 2033-2038 (2010) https://doi.org/10.1002/cjoc.201090339
  22. Luo G, Cheng X, Shi W, Strong PJ, Wang H, Ni W. Response surface analysis of the water: Feed ratio influences on hydrothermal recovery form biomass. Waste Manage. 31: 438-444 (2011) https://doi.org/10.1016/j.wasman.2010.10.014
  23. Luo G, Shi W, Chen X, Ni W, Strong PJ, Jia Y, Wang H. Hydrothermal conversion of water lettuce biomass at 473 or 523 K. Biomass Bioenerg. 35: 4855-4861 (2011) https://doi.org/10.1016/j.biombioe.2011.10.002
  24. Yoshida H, Terashima M, Takahashi Y. Production of organic acids and amino acids from fish meat by sub-critical hydrolysis. Biotechnol. Progr. 15: 1090-1094 (1999) https://doi.org/10.1021/bp9900920
  25. Daimon H, Kang KY, Sato KN, Fujie K. Development of marine waste recycling technologies using sub- and supercritical water. J. Chem. Eng. Jpn. 34: 1091-1096 (2001) https://doi.org/10.1252/jcej.34.1091
  26. Sato N, Quitain AT, Kang KY, Daimon H, Fujie K. Reaction kinetics of amino acid decomposition in high-temperature and high-pressure water. Ind. Eng. Chem. Res. 43: 3217-3222 (2004) https://doi.org/10.1021/ie020733n
  27. Fountoulakis M, Lahm HW. Hydrolysis and amino acid composition analysis proteins. J. Chromatogr. A 826: 109-134 (1998) https://doi.org/10.1016/S0021-9673(98)00721-3
  28. Rogalinski T, Liu K, Albrecht T, Brunner G. Hydrolysis kinetics of biopolymers in subcritical water. J. Supercrit. Fluid. 46: 335-341 (2008) https://doi.org/10.1016/j.supflu.2007.09.037