DOI QR코드

DOI QR Code

Membrane engineering for environmental protection and sustainable industrial growth: Options for water and gas treatment

  • Brunetti, Adele (Institute on Membrane Technology (ITM-CNR), University of Calabria) ;
  • Macedonio, Francesca (Institute on Membrane Technology (ITM-CNR), University of Calabria) ;
  • Barbieri, Giuseppe (Institute on Membrane Technology (ITM-CNR), University of Calabria) ;
  • Drioli, Enrico (Institute on Membrane Technology (ITM-CNR), University of Calabria)
  • Received : 2015.07.17
  • Accepted : 2015.11.12
  • Published : 2015.12.31

Abstract

The increasing demand for materials, energy and products drives chemical engineers to propose new solutions everyday able to promote development while supporting sustainable industrial growth. Membrane engineering can offer significant assets to this development. Here, they are identified the most interesting aspects of membrane engineering in strategic industrial sectors such as water treatment, energy production and depletion and reuse of raw materials. The opportunity to integrate membrane units with innovative systems to exploit the potential advantages derived from their synergic uses is also emphasized. The analysis of the potentialities of these new technologies is supported by the introduction of process intensification metrics which provide an alternative and innovative point of view regarding the unit performance, highlighting important aspects characterizing the technology and not identified by the conventional analysis of the unit performance.

References

  1. Dautzenberg FM, Mukherjee M. Process intensification using multifunctional reactors. Chem. Eng. Sci. 2001;56:251-267. https://doi.org/10.1016/S0009-2509(00)00228-1
  2. Hessel V, Kralisch D, Kockmann N, Noel T, Wang Q. Novel Process Windows for Enabling, Accelerating, and Uplifting Flow Chemistry. Chemsuschem. 2013;6:746-789. https://doi.org/10.1002/cssc.201200766
  3. Boodhoo K, Harvey A. Process Intensification for Green Chemistry. Chem. Listy. 2013;107:665-669.
  4. Gong J, You F. Sustainable design and synthesis of energy systems. Curr. Opin. Chem. Eng. 2015;10:77-86. https://doi.org/10.1016/j.coche.2015.09.001
  5. WHO and UNICEF. Progress on Drinking Water and Sanitation [Internet]. WHO and UNICEF; c2014 [cited 2012 Apr. 13]. Available from: http://www.wssinfo.org/fileadmin/user_upload/resources/JMP_report_2014_webEng.pdf.
  6. Quist-Jensen C, Macedonio F, Drioli E. Membrane crystallization for salts recovery from brine-an experimental and theoretical analysis. Desalin. Water Treat. 2015:1-11.
  7. Elimelech M, Phillip WA. The Future of Seawater Desalination: Energy, Technology, and the Environment. Science 2011;333:712-717. https://doi.org/10.1126/science.1200488
  8. Fritzmann C, Lowenberg J, Wintgens T, Melin T. State-of-the-art of reverse osmosis desalination. Desalination 2007;216:1-76. https://doi.org/10.1016/j.desal.2006.12.009
  9. Global Water Intelligence (GWI/IDA DesalData). Market profile and desalination markets [Internet]. Global Water Intelligence; c2013 [cited 2014 May]. Available from: http://www.desaldata.com/.
  10. Drioli E, Curcio E, Di Profio G, Macedonio F, Criscuoli A. Integrating membrane contactors technology and pressure-driven membrane operations for seawater desalination - Energy, exergy and costs analysis. Chem. Eng. Res. Des. 2006;84:209-220. https://doi.org/10.1205/cherd.05171
  11. Macedonio F, Curcio E, Drioli E. Integrated membrane systems for seawater desalination: energetic and exergetic analysis, economic evaluation, experimental study. Desalination 2007;203:260-276. https://doi.org/10.1016/j.desal.2006.02.021
  12. Macedonio F, Drioli E, Gusev AA, Bardow A, Semiat R, Kurihara M. Efficient technologies for worldwide clean water supply. Chem. Eng. Process. 2012;51:2-17. https://doi.org/10.1016/j.cep.2011.09.011
  13. Semiat R. Energy Demands in Desalination Processes. ES&T. 2008;42:8193-8201. https://doi.org/10.1021/es801330u
  14. Van der Bruggen B, Vandecasteele C. Distillation vs. membrane filtration: overview of process evolutions in seawater desalination. Desalination 2002;143:207-218. https://doi.org/10.1016/S0011-9164(02)00259-X
  15. Drioli E, Ali A, Macedonio F. Membrane distillation: Recent developments and perspectives. Desalination 2015;356:56-84. https://doi.org/10.1016/j.desal.2014.10.028
  16. Miller GW. Integrated concepts in water reuse: managing global water needs. Desalination 2006;187:65-75. https://doi.org/10.1016/j.desal.2005.04.068
  17. Bixio D, Thoeye C, De Koning J, et al. Wastewater reuse in Europe. Desalination 2006;187:89-101. https://doi.org/10.1016/j.desal.2005.04.070
  18. Cote P, Buisson H, Praderie M. Immersed membranes activated sludge process applied to the treatment of municipal wastewater. Water Sci. Technol. 1998;38:437-442. https://doi.org/10.1016/S0273-1223(98)00543-5
  19. Drioli E, Stankiewicz AI, Macedonio F. Membrane engineering in process intensification-An overview. J. Membr. Sci. 2011;380:1-8. https://doi.org/10.1016/j.memsci.2011.06.043
  20. Redondo JA. Brackish-, sea- and wastewater desalination. Desalination 2001;138:29-40. https://doi.org/10.1016/S0011-9164(01)00241-7
  21. Tazi-Pain A, Schrotter JC, Bord G, Payreaudeau M, Buisson H. Recent improvement of the BIOSEP (R) process for industrial and municipal wastewater treatment. Desalination 2002;146:439-443. https://doi.org/10.1016/S0011-9164(02)00538-6
  22. Melin T, Jefferson B, Bixio D, et al. Membrane bioreactor technology for wastewater treatment and reuse. Desalination 2006;187:271-282. https://doi.org/10.1016/j.desal.2005.04.086
  23. Judd S, Jefferson B. Membranes for industrial wastewater recovery and re-use: Elsevier; 2003.
  24. Michels B, Adamczyk F, Koch J. Retrofit of a flue gas heat recovery system at the Mehrum Power Plant. An example of power plant lifetime evaluation in practice. In: Proceedings of the POWER-GEN Europe Conference; 2004. p. 10-11.
  25. Folkedahl BC, Weber GF, Collings ME. Water extraction from coal-fired power plant flue gas: University of North Dakota; 2006.
  26. Ito A. Dehumidification of air by a hygroscopic liquid membrane supported on surface of a hydrophobic microporous membrane. J. Membr. Sci. 2000;175:35-42. https://doi.org/10.1016/S0376-7388(00)00404-X
  27. Sijbesma H, Nymeijer K, van Marwijk R, Heijboer R, Potreck J, Wessling M. Flue gas dehydration using polymer membranes. J. Membr. Sci. 2008;313:263-276. https://doi.org/10.1016/j.memsci.2008.01.024
  28. Zhang LZ, Zhu DS, Deng XH, Hua B. Thermodynamic modeling of a novel air dehumidification system. Energ. Buildings 2005;37:279-286. https://doi.org/10.1016/j.enbuild.2004.06.019
  29. Drioli E, Santoro S, Simone S, et al. ECTFE membrane preparation for recovery of humidified gas streams using membrane condenser. React. Funct. Polym. 2014;79:1-7. https://doi.org/10.1016/j.reactfunctpolym.2014.03.003
  30. Macedonio F, Cersosimo M, Brunetti A, Barbieri G, Drioli E. Water recovery from humidified waste gas streams: Quality control using membrane condenser technology. Chem. Eng. Process 2014;86:196-203. https://doi.org/10.1016/j.cep.2014.08.008
  31. Brunetti A, Santoro S, Macedonio F, Figoli A, Drioli E, Barbieri G. Waste Gaseous Streams: From Environmental Issue to Source of Water by Using Membrane Condensers. Clean-Soil Air Water 2014;42:1145-1153. https://doi.org/10.1002/clen.201300104
  32. Macedonio F, Brunetti A, Barbieri G, Drioli E. Membrane Condenser as a New Technology for Water Recovery from Humidified "Waste" Gaseous Streams. Ind. Eng. Chem. Res. 2013;52:1160-1167. https://doi.org/10.1021/ie203031b
  33. Isetti C, Nannei E, Magrini A. On the application of a membrane air-liquid contactor for air dehumidification. Energ. Buildings 1997;25:185-193. https://doi.org/10.1016/S0378-7788(96)00993-0
  34. Wadhwani S, Wadhwani AK, Agarwal RB. Clean coal technologies - recent advances. In: First International Conference on Clean Coal Technologies for Our Future; 2002 Oct 21-23;Sardinia, Italy.
  35. Kothari R, Buddhi D, Sawhney RL. Comparison of environmental and economic aspects of various hydrogen production methods. Renew. Sust. Energ. Rev. 2008;12:553-563. https://doi.org/10.1016/j.rser.2006.07.012
  36. Raggio G, Pettinau A, Orsini A, et al. Coal gasification pilot plant for hydrogen production. Part B: syngas conversion and hydrogen separation, CCT 2005. In: Second International Conference on Clean Coal Technologies for Our Future; 2005 May 10-12; Castiadas, Sardinia, Italy.
  37. Barbir F. PEM electrolysis for production of hydrogen from renewable energy sources. Sol. Energy. 2005;78:661-669. https://doi.org/10.1016/j.solener.2004.09.003
  38. Barbieri G, Brunetti A, Tricoli G, Drioli E. An innovative configuration of a Pd-based membrane reactor for the production of pure hydrogen - Experimental analysis of water gas shift. J. Power Sources 2008;182:160-167. https://doi.org/10.1016/j.jpowsour.2008.03.086
  39. Brunetti A, Barbieri G, Drioli E. Pd-Based Membrane Reactor for Syngas Upgrading. Energy & Fuels. 2009;23:5073-5076. https://doi.org/10.1021/ef900382u
  40. Brunetti A, Barbieri G, Drioli E. Integrated membrane system for pure hydrogen production: A Pd-Ag membrane reactor and a PEMFC. Fuel Process Technol. 2011;92:166-174. https://doi.org/10.1016/j.fuproc.2010.09.023
  41. Barbieri G, Brunetti A, Caravella A, Drioli E. Pd-based membrane reactors for one-stage process of water gas shift. Rsc. Adv. 2011;1:651-661. https://doi.org/10.1039/c1ra00375e
  42. Brunetti A, Drioli E, Barbieri G. Medium/high temperature water gas shift reaction in a Pd-Ag membrane reactor: an experimental investigation. Rsc. Adv. 2012;2:226-233. https://doi.org/10.1039/C1RA00569C
  43. Abashar MEE, Alhumaizi KI, Adris AM. Investigation of methane-steam reforming in fluidized bed membrane reactors. Chem. Eng. Res. Des. 2003;81:251-258. https://doi.org/10.1205/026387603762878719
  44. Tsotsis TT, Champagnie AM, Vasileiadis SP, Ziaka ZD, Minet RG. Packed-Bed Catalytic Membrane Reactors. Chem. Eng. Sci. 1992;47:2903-2908. https://doi.org/10.1016/0009-2509(92)87149-K
  45. Adris AM, Lim CJ, Grace JR. The fluidized-bed membrane reactor for steam methane reforming: Model verification and parametric study. Chem. Eng. Sci. 1997;52:1609-1622. https://doi.org/10.1016/S0009-2509(96)00511-8
  46. Brunetti A, Barbieri G, Drioli E. Upgrading of a syngas mixture for pure hydrogen production in a Pd-Ag membrane reactor. Chem. Eng. Sci. 2009;64:3448-3454. https://doi.org/10.1016/j.ces.2009.04.028
  47. Strezov V, Evans TJ. Biomass processing technologies: CRC Press; 2014.
  48. Drioli E, Brunetti A, Di Profio G, Barbieri G. Process intensification strategies and membrane engineering. Green Chem. 2012;14:1561-1572. https://doi.org/10.1039/c2gc16668b
  49. Stankiewicz A, Moulijn JA. Process intensification. Ind. Eng. Chem. Res. 2002;41:1920-1924. https://doi.org/10.1021/ie011025p
  50. Charpentier J. Process intensification, a path to the future. Ingenieria quimica. 2006:16-24.
  51. Merkel TC, Lin H, Wei X, Baker R. Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J. Membr. Sci. 2010;359:126-139. https://doi.org/10.1016/j.memsci.2009.10.041
  52. Esteves A, Mota JPB. Novel Hybrid Membrane/Pressure Swing Adsorption Processes for Gas Separation Applications. In: Membrane Engineering for the treatment of gases; 2011; Cambridge, The United Kingdom: The Royal Society of Chemistry. p. 245-275.
  53. Brunetti A, Scura F, Barbieri G, Drioli E. Membrane technologies for $CO_2$ separation. J. Membr. Sci. 2010;359:115-125. https://doi.org/10.1016/j.memsci.2009.11.040
  54. Shao L, Low BT, Chung TS, Greenberg AR. Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future. J. Membr. Sci. 2009;327:18-31. https://doi.org/10.1016/j.memsci.2008.11.019
  55. Favre E, Bounaceur R, Roizard D. Biogas, membranes and carbon dioxide capture. J. Membr. Sci. 2009;328:11-14. https://doi.org/10.1016/j.memsci.2008.12.017
  56. Basu S, Khan AL, Cano-Odena A, Liu CQ, Vankelecom IFJ. Membrane-based technologies for biogas separations. Chem. Soc. Rev. 2010;39:750-768. https://doi.org/10.1039/B817050A
  57. Lin HQ, Van Wagner E, Raharjo R, Freeman BD, Roman I. High-performance polymer membranes for natural-gas sweetening. Adv. Mater. 2006;18:39-44. https://doi.org/10.1002/adma.200501409
  58. Scholes CA, Bacus J, Chen GQ, et al. Pilot plant performance of rubbery polymeric membranes for carbon dioxide separation from syngas. J. Membr. Sci. 2012;389:470-477. https://doi.org/10.1016/j.memsci.2011.11.011
  59. Brunetti A, Scura F, Barbieri G, Drioli E. Membrane technologies for $CO_2$ separation. J. Membr. Sci. 2010;359:115-125. https://doi.org/10.1016/j.memsci.2009.11.040
  60. Ciferno JP, Fout TE, Jones AP, Murphy JT. Capturing Carbon from Existing Coal-Fired Power Plants. Chem. Eng. Prog. 2009;105:33-41.
  61. Herzog H. What future for carbon capture and sequestration: new technologies could reduce carbon dioxide emissions to the atmosphere while still allowing the use of fossil fuels. Environ. Sci. Technol. 2001;35.
  62. White CM, Strazisar BR, Granite EJ, et al. Separation and capture of $CO_2$ from large stationary sources and sequestration in geological formations-coalbeds and deep saline aquifers. J. Air Waste Manag. Assoc. 2003;53.6:645-715. https://doi.org/10.1080/10473289.2003.10466206
  63. Favre E. Carbon dioxide recovery from post-combustion processes: Can gas permeation membranes compete with absorption? J. Membr. Sci. 2007;294:50-59. https://doi.org/10.1016/j.memsci.2007.02.007
  64. Merkel TC, Lin H, Wei X, Baker R. Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J. Membr. Sci. 2010;359:126-139. https://doi.org/10.1016/j.memsci.2009.10.041
  65. Li BY, Duan YH, Luebke D, Morreale B. Advances in $CO_2$ capture technology: A patent review. Appl. Energ. 2013;102:1439-1447. https://doi.org/10.1016/j.apenergy.2012.09.009
  66. Peters L, Hussain A, Follmann M, Melin T, Hagg MB. $CO_2$ removal from natural gas by employing amine absorption and membrane technology-A technical and economical analysis. Chem. Eng. J. 2011;172:952-960. https://doi.org/10.1016/j.cej.2011.07.007
  67. Daal L, Claassen L, Bruns R, et al. Field tests of carbon dioxide removal from flue gasses using polymer membranes. VGB powertech. 2013.
  68. Tuinier MJ, Hamers HP, Annaland MV. Techno-economic evaluation of cryogenic $CO_2$ capture-A comparison with absorption and membrane technology. Int. J. Greenh. Gas. Con. 2011;5:1559-1565. https://doi.org/10.1016/j.ijggc.2011.08.013
  69. Powell CE, Qiao GG. Polymeric $CO_2$/$N_2$ gas separation membranes for the capture of carbon dioxide from power plant flue gases. J. Membr. Sci. 2006;279:1-49. https://doi.org/10.1016/j.memsci.2005.12.062
  70. Luis P, Van Gerven T, Van der Bruggen B. Recent developments in membrane-based technologies for $CO_2$ capture. Prog. Energ. Combust. Sci. 2012;38:419-448. https://doi.org/10.1016/j.pecs.2012.01.004
  71. Ramasubramanian K, Ho WW. Recent developments on membranes for post-combustion carbon capture. Curr. Opin. Chem. Eng. 2011;1:47-54. https://doi.org/10.1016/j.coche.2011.08.002
  72. Park HB, Jung CH, Lee YM, et al. Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 2007;318:254-258. https://doi.org/10.1126/science.1146744
  73. Jung CH, Lee JE, Han SH, Park HB, Lee YM. Highly permeable and selective poly (benzoxazole-co-imide) membranes for gas separation. J. Membr. Sci. 2010;350:301-309. https://doi.org/10.1016/j.memsci.2010.01.005
  74. Calle M, Lee YM. Thermally rearranged (TR) poly (ether- benzoxazole) membranes for gas separation. Macromolecules 2011;44:1156-1165. https://doi.org/10.1021/ma102878z
  75. Adams RT, Lee JS, Bae T-H, et al. $CO_2$-CH4 permeation in high zeolite 4A loading mixed matrix membranes. J. Membr. Sci. 2011;367:197-203. https://doi.org/10.1016/j.memsci.2010.10.059
  76. Adams R, Carson C, Ward J, Tannenbaum R, Koros W. Metal organic framework mixed matrix membranes for gas separations. Micropor. Mesopor. Mat. 2010;131:13-20. https://doi.org/10.1016/j.micromeso.2009.11.035
  77. Robeson, Lloyd M. The upper bound revisited. J. Memb. Sci. 2008;320.1:390-400. https://doi.org/10.1016/j.memsci.2008.04.030
  78. Low BT, Zhao L, Merkel TC, Weber M, Stolten D. A parametric study of the impact of membrane materials and process operating conditions on carbon capture from humidified flue gas. J. Membr. Sci. 2013;431:139-155. https://doi.org/10.1016/j.memsci.2012.12.014
  79. Association ID. IDA Desalination Yearbook 2011-2012. Water Desalination Report. 2012:62-83.
  80. Bardi U. Extracting minerals from seawater: an energy analysis. Sustainability 2010;2:980-992. https://doi.org/10.3390/su2040980
  81. Floor Anthoni. The chemical composition of seawater [Internet]. Floor Anthoni [cited 2015 Feb. 5]. Available from: http://www.seafriends.org.nz/oceano/seawater.htm.
  82. United States Geological Survey (USGS). Mineral Commodities Summaries 2015 [Internet]. USGS [cited 2015 Feb. 05]. Available from: http://minerals.usgs.gov/minerals/pubs/mcs/.
  83. Nelson KH, Thompson TG. Deposition of salts from sea water by frigid concentration: DTIC Document; 1954.
  84. Van der Ham F, Seckler MM, Witkamp GJ. Eutectic freeze crystallization in a new apparatus: the cooled disk column crystallizer. Chem. Eng. Process. 2004;43:161-167. https://doi.org/10.1016/S0255-2701(03)00018-7
  85. Drioli E, Di Profio G, Curcio E. Progress in membrane crystallization. Curr. Opin. Chem. Eng. 2012;1:178-182. https://doi.org/10.1016/j.coche.2012.03.005
  86. Di Profio G, Curcio E, Drioli E. Trypsin crystallization by membrane-based techniques. J. Struct. Biol. 2005;150:41-49. https://doi.org/10.1016/j.jsb.2004.12.006
  87. Drioli E, Curcio E, Criscuoli A, Di Profio G. Integrated system for recovery of $CaCO_3$, NaCl and $MgSO_4{\cdot}7H_2O$ from nanofiltration retentate. J. Membr. Sci. 2004;239:27-38. https://doi.org/10.1016/j.memsci.2003.09.028
  88. Curcio E, Criscuoli A, Drioli E. Membrane crystallizers. Ind. Eng. Chem. Res. 2001;40:2679-2684. https://doi.org/10.1021/ie000906d
  89. Brunetti A, Drioli E, Barbieri G. Energy and mass intensities in hydrogen upgrading by a membrane reactor. Fuel Process. Technol. 2014;118:278-286. https://doi.org/10.1016/j.fuproc.2013.09.009
  90. Barbieri G, Marigliano G, Perri G, Drioli E. Conversion-temperature diagram for a palladium membrane reactor. Analysis of an endothermic reaction: methane steam reforming. Ind. Eng. Chem. Res. 2001;40:2017-2026. https://doi.org/10.1021/ie0006211
  91. Choi S-H, Brunetti A, Drioli E, Barbieri G. $H_2$ separation from $H_2$/$N_2$ and $H_2$/CO mixtures with co-polyimide hollow fiber module. Separ. Sci. Technol. 2010;46:1-13. https://doi.org/10.1080/01496395.2010.487847
  92. G. Q. Miller, J. Stocker, Proceeding of the 4th European Technical Seminar on Hydrogen Plants. Lisbon (Portugal); 2003. p. 22-25.
  93. Spillman RW. Economics of gas separation membranes. Chem. Eng. Prog. 1989;85:41-62.
  94. Brunetti A, Sun Y, Caravella A, Drioli E, Barbieri G. Process Intensification for greenhouse gas separation from biogas: More efficient process schemes based on membrane-integrated systems. Int. J. Greenh. Gas Con. 2015;35:18-29. https://doi.org/10.1016/j.ijggc.2015.01.021

Cited by

  1. separation pp.21523878, 2019, https://doi.org/10.1002/ghg.1853