Membrane engineering for environmental protection and sustainable industrial growth: Options for water and gas treatment

  • Brunetti, Adele (Institute on Membrane Technology (ITM-CNR), University of Calabria) ;
  • Macedonio, Francesca (Institute on Membrane Technology (ITM-CNR), University of Calabria) ;
  • Barbieri, Giuseppe (Institute on Membrane Technology (ITM-CNR), University of Calabria) ;
  • Drioli, Enrico (Institute on Membrane Technology (ITM-CNR), University of Calabria)
  • Received : 2015.07.17
  • Accepted : 2015.11.12
  • Published : 2015.12.31


The increasing demand for materials, energy and products drives chemical engineers to propose new solutions everyday able to promote development while supporting sustainable industrial growth. Membrane engineering can offer significant assets to this development. Here, they are identified the most interesting aspects of membrane engineering in strategic industrial sectors such as water treatment, energy production and depletion and reuse of raw materials. The opportunity to integrate membrane units with innovative systems to exploit the potential advantages derived from their synergic uses is also emphasized. The analysis of the potentialities of these new technologies is supported by the introduction of process intensification metrics which provide an alternative and innovative point of view regarding the unit performance, highlighting important aspects characterizing the technology and not identified by the conventional analysis of the unit performance.


  1. Dautzenberg FM, Mukherjee M. Process intensification using multifunctional reactors. Chem. Eng. Sci. 2001;56:251-267.
  2. Hessel V, Kralisch D, Kockmann N, Noel T, Wang Q. Novel Process Windows for Enabling, Accelerating, and Uplifting Flow Chemistry. Chemsuschem. 2013;6:746-789.
  3. Boodhoo K, Harvey A. Process Intensification for Green Chemistry. Chem. Listy. 2013;107:665-669.
  4. Gong J, You F. Sustainable design and synthesis of energy systems. Curr. Opin. Chem. Eng. 2015;10:77-86.
  5. WHO and UNICEF. Progress on Drinking Water and Sanitation [Internet]. WHO and UNICEF; c2014 [cited 2012 Apr. 13]. Available from:
  6. Quist-Jensen C, Macedonio F, Drioli E. Membrane crystallization for salts recovery from brine-an experimental and theoretical analysis. Desalin. Water Treat. 2015:1-11.
  7. Elimelech M, Phillip WA. The Future of Seawater Desalination: Energy, Technology, and the Environment. Science 2011;333:712-717.
  8. Fritzmann C, Lowenberg J, Wintgens T, Melin T. State-of-the-art of reverse osmosis desalination. Desalination 2007;216:1-76.
  9. Global Water Intelligence (GWI/IDA DesalData). Market profile and desalination markets [Internet]. Global Water Intelligence; c2013 [cited 2014 May]. Available from:
  10. Drioli E, Curcio E, Di Profio G, Macedonio F, Criscuoli A. Integrating membrane contactors technology and pressure-driven membrane operations for seawater desalination - Energy, exergy and costs analysis. Chem. Eng. Res. Des. 2006;84:209-220.
  11. Macedonio F, Curcio E, Drioli E. Integrated membrane systems for seawater desalination: energetic and exergetic analysis, economic evaluation, experimental study. Desalination 2007;203:260-276.
  12. Macedonio F, Drioli E, Gusev AA, Bardow A, Semiat R, Kurihara M. Efficient technologies for worldwide clean water supply. Chem. Eng. Process. 2012;51:2-17.
  13. Semiat R. Energy Demands in Desalination Processes. ES&T. 2008;42:8193-8201.
  14. Van der Bruggen B, Vandecasteele C. Distillation vs. membrane filtration: overview of process evolutions in seawater desalination. Desalination 2002;143:207-218.
  15. Drioli E, Ali A, Macedonio F. Membrane distillation: Recent developments and perspectives. Desalination 2015;356:56-84.
  16. Miller GW. Integrated concepts in water reuse: managing global water needs. Desalination 2006;187:65-75.
  17. Bixio D, Thoeye C, De Koning J, et al. Wastewater reuse in Europe. Desalination 2006;187:89-101.
  18. Cote P, Buisson H, Praderie M. Immersed membranes activated sludge process applied to the treatment of municipal wastewater. Water Sci. Technol. 1998;38:437-442.
  19. Drioli E, Stankiewicz AI, Macedonio F. Membrane engineering in process intensification-An overview. J. Membr. Sci. 2011;380:1-8.
  20. Redondo JA. Brackish-, sea- and wastewater desalination. Desalination 2001;138:29-40.
  21. Tazi-Pain A, Schrotter JC, Bord G, Payreaudeau M, Buisson H. Recent improvement of the BIOSEP (R) process for industrial and municipal wastewater treatment. Desalination 2002;146:439-443.
  22. Melin T, Jefferson B, Bixio D, et al. Membrane bioreactor technology for wastewater treatment and reuse. Desalination 2006;187:271-282.
  23. Judd S, Jefferson B. Membranes for industrial wastewater recovery and re-use: Elsevier; 2003.
  24. Michels B, Adamczyk F, Koch J. Retrofit of a flue gas heat recovery system at the Mehrum Power Plant. An example of power plant lifetime evaluation in practice. In: Proceedings of the POWER-GEN Europe Conference; 2004. p. 10-11.
  25. Folkedahl BC, Weber GF, Collings ME. Water extraction from coal-fired power plant flue gas: University of North Dakota; 2006.
  26. Ito A. Dehumidification of air by a hygroscopic liquid membrane supported on surface of a hydrophobic microporous membrane. J. Membr. Sci. 2000;175:35-42.
  27. Sijbesma H, Nymeijer K, van Marwijk R, Heijboer R, Potreck J, Wessling M. Flue gas dehydration using polymer membranes. J. Membr. Sci. 2008;313:263-276.
  28. Zhang LZ, Zhu DS, Deng XH, Hua B. Thermodynamic modeling of a novel air dehumidification system. Energ. Buildings 2005;37:279-286.
  29. Drioli E, Santoro S, Simone S, et al. ECTFE membrane preparation for recovery of humidified gas streams using membrane condenser. React. Funct. Polym. 2014;79:1-7.
  30. Macedonio F, Cersosimo M, Brunetti A, Barbieri G, Drioli E. Water recovery from humidified waste gas streams: Quality control using membrane condenser technology. Chem. Eng. Process 2014;86:196-203.
  31. Brunetti A, Santoro S, Macedonio F, Figoli A, Drioli E, Barbieri G. Waste Gaseous Streams: From Environmental Issue to Source of Water by Using Membrane Condensers. Clean-Soil Air Water 2014;42:1145-1153.
  32. Macedonio F, Brunetti A, Barbieri G, Drioli E. Membrane Condenser as a New Technology for Water Recovery from Humidified "Waste" Gaseous Streams. Ind. Eng. Chem. Res. 2013;52:1160-1167.
  33. Isetti C, Nannei E, Magrini A. On the application of a membrane air-liquid contactor for air dehumidification. Energ. Buildings 1997;25:185-193.
  34. Wadhwani S, Wadhwani AK, Agarwal RB. Clean coal technologies - recent advances. In: First International Conference on Clean Coal Technologies for Our Future; 2002 Oct 21-23;Sardinia, Italy.
  35. Kothari R, Buddhi D, Sawhney RL. Comparison of environmental and economic aspects of various hydrogen production methods. Renew. Sust. Energ. Rev. 2008;12:553-563.
  36. Raggio G, Pettinau A, Orsini A, et al. Coal gasification pilot plant for hydrogen production. Part B: syngas conversion and hydrogen separation, CCT 2005. In: Second International Conference on Clean Coal Technologies for Our Future; 2005 May 10-12; Castiadas, Sardinia, Italy.
  37. Barbir F. PEM electrolysis for production of hydrogen from renewable energy sources. Sol. Energy. 2005;78:661-669.
  38. Barbieri G, Brunetti A, Tricoli G, Drioli E. An innovative configuration of a Pd-based membrane reactor for the production of pure hydrogen - Experimental analysis of water gas shift. J. Power Sources 2008;182:160-167.
  39. Brunetti A, Barbieri G, Drioli E. Pd-Based Membrane Reactor for Syngas Upgrading. Energy & Fuels. 2009;23:5073-5076.
  40. Brunetti A, Barbieri G, Drioli E. Integrated membrane system for pure hydrogen production: A Pd-Ag membrane reactor and a PEMFC. Fuel Process Technol. 2011;92:166-174.
  41. Barbieri G, Brunetti A, Caravella A, Drioli E. Pd-based membrane reactors for one-stage process of water gas shift. Rsc. Adv. 2011;1:651-661.
  42. Brunetti A, Drioli E, Barbieri G. Medium/high temperature water gas shift reaction in a Pd-Ag membrane reactor: an experimental investigation. Rsc. Adv. 2012;2:226-233.
  43. Abashar MEE, Alhumaizi KI, Adris AM. Investigation of methane-steam reforming in fluidized bed membrane reactors. Chem. Eng. Res. Des. 2003;81:251-258.
  44. Tsotsis TT, Champagnie AM, Vasileiadis SP, Ziaka ZD, Minet RG. Packed-Bed Catalytic Membrane Reactors. Chem. Eng. Sci. 1992;47:2903-2908.
  45. Adris AM, Lim CJ, Grace JR. The fluidized-bed membrane reactor for steam methane reforming: Model verification and parametric study. Chem. Eng. Sci. 1997;52:1609-1622.
  46. Brunetti A, Barbieri G, Drioli E. Upgrading of a syngas mixture for pure hydrogen production in a Pd-Ag membrane reactor. Chem. Eng. Sci. 2009;64:3448-3454.
  47. Strezov V, Evans TJ. Biomass processing technologies: CRC Press; 2014.
  48. Drioli E, Brunetti A, Di Profio G, Barbieri G. Process intensification strategies and membrane engineering. Green Chem. 2012;14:1561-1572.
  49. Stankiewicz A, Moulijn JA. Process intensification. Ind. Eng. Chem. Res. 2002;41:1920-1924.
  50. Charpentier J. Process intensification, a path to the future. Ingenieria quimica. 2006:16-24.
  51. Merkel TC, Lin H, Wei X, Baker R. Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J. Membr. Sci. 2010;359:126-139.
  52. Esteves A, Mota JPB. Novel Hybrid Membrane/Pressure Swing Adsorption Processes for Gas Separation Applications. In: Membrane Engineering for the treatment of gases; 2011; Cambridge, The United Kingdom: The Royal Society of Chemistry. p. 245-275.
  53. Brunetti A, Scura F, Barbieri G, Drioli E. Membrane technologies for $CO_2$ separation. J. Membr. Sci. 2010;359:115-125.
  54. Shao L, Low BT, Chung TS, Greenberg AR. Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future. J. Membr. Sci. 2009;327:18-31.
  55. Favre E, Bounaceur R, Roizard D. Biogas, membranes and carbon dioxide capture. J. Membr. Sci. 2009;328:11-14.
  56. Basu S, Khan AL, Cano-Odena A, Liu CQ, Vankelecom IFJ. Membrane-based technologies for biogas separations. Chem. Soc. Rev. 2010;39:750-768.
  57. Lin HQ, Van Wagner E, Raharjo R, Freeman BD, Roman I. High-performance polymer membranes for natural-gas sweetening. Adv. Mater. 2006;18:39-44.
  58. Scholes CA, Bacus J, Chen GQ, et al. Pilot plant performance of rubbery polymeric membranes for carbon dioxide separation from syngas. J. Membr. Sci. 2012;389:470-477.
  59. Brunetti A, Scura F, Barbieri G, Drioli E. Membrane technologies for $CO_2$ separation. J. Membr. Sci. 2010;359:115-125.
  60. Ciferno JP, Fout TE, Jones AP, Murphy JT. Capturing Carbon from Existing Coal-Fired Power Plants. Chem. Eng. Prog. 2009;105:33-41.
  61. Herzog H. What future for carbon capture and sequestration: new technologies could reduce carbon dioxide emissions to the atmosphere while still allowing the use of fossil fuels. Environ. Sci. Technol. 2001;35.
  62. White CM, Strazisar BR, Granite EJ, et al. Separation and capture of $CO_2$ from large stationary sources and sequestration in geological formations-coalbeds and deep saline aquifers. J. Air Waste Manag. Assoc. 2003;53.6:645-715.
  63. Favre E. Carbon dioxide recovery from post-combustion processes: Can gas permeation membranes compete with absorption? J. Membr. Sci. 2007;294:50-59.
  64. Merkel TC, Lin H, Wei X, Baker R. Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J. Membr. Sci. 2010;359:126-139.
  65. Li BY, Duan YH, Luebke D, Morreale B. Advances in $CO_2$ capture technology: A patent review. Appl. Energ. 2013;102:1439-1447.
  66. Peters L, Hussain A, Follmann M, Melin T, Hagg MB. $CO_2$ removal from natural gas by employing amine absorption and membrane technology-A technical and economical analysis. Chem. Eng. J. 2011;172:952-960.
  67. Daal L, Claassen L, Bruns R, et al. Field tests of carbon dioxide removal from flue gasses using polymer membranes. VGB powertech. 2013.
  68. Tuinier MJ, Hamers HP, Annaland MV. Techno-economic evaluation of cryogenic $CO_2$ capture-A comparison with absorption and membrane technology. Int. J. Greenh. Gas. Con. 2011;5:1559-1565.
  69. Powell CE, Qiao GG. Polymeric $CO_2$/$N_2$ gas separation membranes for the capture of carbon dioxide from power plant flue gases. J. Membr. Sci. 2006;279:1-49.
  70. Luis P, Van Gerven T, Van der Bruggen B. Recent developments in membrane-based technologies for $CO_2$ capture. Prog. Energ. Combust. Sci. 2012;38:419-448.
  71. Ramasubramanian K, Ho WW. Recent developments on membranes for post-combustion carbon capture. Curr. Opin. Chem. Eng. 2011;1:47-54.
  72. Park HB, Jung CH, Lee YM, et al. Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 2007;318:254-258.
  73. Jung CH, Lee JE, Han SH, Park HB, Lee YM. Highly permeable and selective poly (benzoxazole-co-imide) membranes for gas separation. J. Membr. Sci. 2010;350:301-309.
  74. Calle M, Lee YM. Thermally rearranged (TR) poly (ether- benzoxazole) membranes for gas separation. Macromolecules 2011;44:1156-1165.
  75. Adams RT, Lee JS, Bae T-H, et al. $CO_2$-CH4 permeation in high zeolite 4A loading mixed matrix membranes. J. Membr. Sci. 2011;367:197-203.
  76. Adams R, Carson C, Ward J, Tannenbaum R, Koros W. Metal organic framework mixed matrix membranes for gas separations. Micropor. Mesopor. Mat. 2010;131:13-20.
  77. Robeson, Lloyd M. The upper bound revisited. J. Memb. Sci. 2008;320.1:390-400.
  78. Low BT, Zhao L, Merkel TC, Weber M, Stolten D. A parametric study of the impact of membrane materials and process operating conditions on carbon capture from humidified flue gas. J. Membr. Sci. 2013;431:139-155.
  79. Association ID. IDA Desalination Yearbook 2011-2012. Water Desalination Report. 2012:62-83.
  80. Bardi U. Extracting minerals from seawater: an energy analysis. Sustainability 2010;2:980-992.
  81. Floor Anthoni. The chemical composition of seawater [Internet]. Floor Anthoni [cited 2015 Feb. 5]. Available from:
  82. United States Geological Survey (USGS). Mineral Commodities Summaries 2015 [Internet]. USGS [cited 2015 Feb. 05]. Available from:
  83. Nelson KH, Thompson TG. Deposition of salts from sea water by frigid concentration: DTIC Document; 1954.
  84. Van der Ham F, Seckler MM, Witkamp GJ. Eutectic freeze crystallization in a new apparatus: the cooled disk column crystallizer. Chem. Eng. Process. 2004;43:161-167.
  85. Drioli E, Di Profio G, Curcio E. Progress in membrane crystallization. Curr. Opin. Chem. Eng. 2012;1:178-182.
  86. Di Profio G, Curcio E, Drioli E. Trypsin crystallization by membrane-based techniques. J. Struct. Biol. 2005;150:41-49.
  87. Drioli E, Curcio E, Criscuoli A, Di Profio G. Integrated system for recovery of $CaCO_3$, NaCl and $MgSO_4{\cdot}7H_2O$ from nanofiltration retentate. J. Membr. Sci. 2004;239:27-38.
  88. Curcio E, Criscuoli A, Drioli E. Membrane crystallizers. Ind. Eng. Chem. Res. 2001;40:2679-2684.
  89. Brunetti A, Drioli E, Barbieri G. Energy and mass intensities in hydrogen upgrading by a membrane reactor. Fuel Process. Technol. 2014;118:278-286.
  90. Barbieri G, Marigliano G, Perri G, Drioli E. Conversion-temperature diagram for a palladium membrane reactor. Analysis of an endothermic reaction: methane steam reforming. Ind. Eng. Chem. Res. 2001;40:2017-2026.
  91. Choi S-H, Brunetti A, Drioli E, Barbieri G. $H_2$ separation from $H_2$/$N_2$ and $H_2$/CO mixtures with co-polyimide hollow fiber module. Separ. Sci. Technol. 2010;46:1-13.
  92. G. Q. Miller, J. Stocker, Proceeding of the 4th European Technical Seminar on Hydrogen Plants. Lisbon (Portugal); 2003. p. 22-25.
  93. Spillman RW. Economics of gas separation membranes. Chem. Eng. Prog. 1989;85:41-62.
  94. Brunetti A, Sun Y, Caravella A, Drioli E, Barbieri G. Process Intensification for greenhouse gas separation from biogas: More efficient process schemes based on membrane-integrated systems. Int. J. Greenh. Gas Con. 2015;35:18-29.

Cited by

  1. separation pp.21523878, 2019,