Effect of Additives on the Characteristics of Amorphous Nano Boron Powder Fabricated by Self-Propagating High Temperature Synthesis

자전연소합성법을 이용한 비정질 나노 붕소 분말 특성에미치는 첨가제의 영향

Joo, Sin Hyong;Nersisyan, Hayk H.;Lee, Tae Hyuk;Cho, Young Hee;Kim, Hong Moule;Lee, Huk Hee;Lee, Jong Hyeon

  • Received : 2015.09.15
  • Accepted : 2015.10.19
  • Published : 2015.12.27


The self-propagating high temperature synthesis approach was applied to synthesize amorphous boron nano-powders in argon atmospheres. For this purpose, we investigated the characteristics of a thermally induced combustion wave in the $B_2O_3+{\alpha}Mg$ system(${\alpha}=1.0-8.0$) in an argon atmospheres. In this study, the exothermic nature of the $B_2O_3-Mg$ reaction was investigated using thermodynamic calculations. Experimental study was conducted based on the calculation data and the SHS products consisting of crystalline boron and other compounds were obtained starting with a different initial molar ratio of Mg. It was found that the $B_2O_3$ and Mg reaction system produced a high combustion temperature with a rapid combustion reaction. In order to regulate the combustion reaction, NaCl, $Na_2B_4O_7$ and $H_3BO_3$ additives were investigated as diluents. In an experimental study, it was found that all diluents effectively stabilized the reaction regime. The final product of the $B_2O_3+{\alpha}Mg$ system with 0.5 mole $Na_2B_4O_7$ was identified to be amorphous boron nano-powders(< 100 nm).


amorphous boron;SHS;microstructure;nano powder


  1. X. Hui, K. Kumar, C. J. Sung, T. Edwards and D. Gardner, Fuel, 98, 176 (2012).
  2. G. R. Wilson, T. Edwards, E. Corporan and R. L. Freerks, Energy Fuels, 27, 962 (2013).
  3. M. G. Sibi, B. Singh, R. Kumar, C. Pendem and A. K. Sinha, Green Chem., 14, 976 (2012).
  4. L. Wang, J. J. Zou, X. Zhang and L. Wang, Fuel, 91, 164 (2012).
  5. B. Van Devener, J. P. L. Perez, J. Jankovich and S. L. Anderson, Energy Fuels, 23, 6111 (2009).
  6. W. Q. Pang, X. Z. Fan, W. Zhang, H. X. Xu, J. Z. Li, Y. H. Li, X. B. Shi and Y. Li, Propellants Explos. Pyrotech., 36, 360 (2011).
  7. S. Mohan, M. A. Trunov, E. L. Dreizin, J. Propul. Power, 24, 199 (2008).
  8. R. A. Yetter, G. A. Risha and S. F. Son, Proc. Combust. Inst., 32, 1819 (2009).
  9. A. Gany, Defense Sci. J., 56, 321 (2006).
  10. A. Ulas, K. K. Kuo and C. Gotzmer, Combust. Flame, 127, 1935 (2001).
  11. S. Karmakar, N. Wang, S. Acharya and K. M. Dooley, Combust. Flame, 160, 3004 (2013).
  12. P. Z. Si, M. Zhang, C. Y. You, D. Y. Geng, J. H. Du, X. G. Zhao, X. L. Ma and Z. D. Zhang, J. Mater. Sci., 38, 689 (2003).
  13. B. J. Bellott, W. Noh, R. G. Nuzzo and G. S. Girolami, Chem. Commun., 22, 3214 (2009).
  14. J. V. Marzik, R. J. Suplinskas, R. H. T. Wilke, P. C. Canfield, D. K. Finnemore, M. Rindfleisch, J. Margolies and S. T. Hannahs, Physica C, 423, 83 (2005).
  15. A. L. Pickering, C. Mitterbauer, N. D. Browning, S. M. Kauzlarich and P. P. Power, Chem. Commun., 6, 580 (2007).
  16. B. Van Devener, J. P. L. Perez, J. Jankovich and S. L. Anderson, Energy Fuels, 23, 6111 (2009).
  17. M. Vignolo, G. Bovone, D. Matera, D. Nardelli, C. Bernini and A. Sergio Siri, Chem. Eng. J. 256, 32 (2014).
  18. C. Y. Shin, K. S. Yun, Y. C. Park, H. H. Nersisyan and C. W. Won, J. Korean Ceram. Soc., 42, 22 (2005).
  19. X. Y. Liu, X. D. Zhao, W. M. Hou and W. H. Su, J. Alloys Compd., 223, L7 (1995).
  20. V. Adasch, K. W. Hess, T. Ludwig, N. Vojteer and H. Hillebrecht, J. Solid State Chem., 179, 2916 (2006).
  21. H. Lorenz and I. Orgzall, Scripta Mater., 52, 537 (2005).


Grant : development of nano-sized powder manufacturing technology for producing superconducting wire

Supported by : Ministry of Trade, Industry and Energy