Co-Embedded Graphitic Porous Carbon Nanofibers for Pt-Free Counter Electrode in Dye-Sensitized Solar Cells

염료감응형 태양전지의 비백금 상대전극을 위한 Co가 내재된 Graphitic 다공성 탄소나노섬유

  • Received : 2015.09.16
  • Accepted : 2015.10.23
  • Published : 2015.12.27


Co-embedded graphitic porous carbon nanofibers(Co-GPCNFs) are synthesized by using an electrospinning method. Their morphological, structural, electrochemical, and photovoltaic properties are investigated. To obtain the optimum condition of Co-GPCNFs for dye-sensitized solar cells(DSSCs), the amount of cobalt precursor in an electrospinning solutuion are controlled to be 0 wt%(conventional CNFs), 1 wt%(sample A), and 3 wt%(sample B). Among them, sample B exhibited a high degree of graphitization and porous structure compared to conventional CNFs and sample A, which result in the performance improvement of DSSCs. Therefore, sample B showed a high current density(JSC, $12.88mA/cm^2$) and excellent power conversion efficiency(PCE, 5.33 %) than those of conventional CNFs($12.00mA/cm^2$, 3.78 %). This result can be explained by combined effects of the increased contact area between the electrode and elecytolyte caused by improved porosity and the increased conductivity caused by the formation of a high degree of graphitization. Thus, the Co-GPCNFs may be used as a promising alternative of Pt-free counter electrode in DSSCs.


dye-sensitized solar cells;counter electrode;Pt-free;graphitic porous carbon nanofibers;catalytic properties


  1. M. Gratzel, Nature, 414, 338 (2001).
  2. J-Y. Lin, J-H. Lian and T-C. Wei, Electrochem. Solid State Lett., 14, D41 (2011).
  3. D. Sebastian, V. Baglio, M. Girolamo, R. Moliner, M. J. Lazaro and A. S. Arico, J. Power Sourc., 250, 242 (2014).
  4. T. Battumur, S. H. Mujawar, Q. T. Truong, S. B. Ambade, D. S. Lee, W. J. Lee, S-H. Han and S-H. Lee, Curr. Appl. Phys., 12, e49 (2012).
  5. H-J. Shin, S. S. Jeon and S. S. Im, Synth. Met., 161, 1284 (2011).
  6. S. B. Yoon, G. S. Chai, S. K. Kang, J-S. Yu, K. P. Gierszal and M. Jaroniec, J. Am. Chem. Soc., 127, 4188 (2005).
  7. M. N. Patel, X. Wang, D. A. Slanac, D. A. Ferrer, S. Dai, K. P. Johnston and K. J. Stevenson, J. Mater. Chem., 22, 3160 (2012).
  8. O. P. Krivoruchko, N. I. Maksimova, V. I. Zaikovskii and A. N. Salanov, Carbon, 38, 1075 (2000).
  9. M. Sevilla and A. B. Fuertes, Carbon, 44, 468 (2006).
  10. H. L. An, G-H. An and H-J Ahn, J. Alloys Compd., 645, 317 (2015).
  11. Y-J. Lee, B-R. Koo and H-J. Ahn, J. Korean Powder Metall. Inst., 21, 360 (2014).
  12. H-I. Joh, H. K. Song, K-B. Yi and S. H. Lee, Carbon, 53, 399 (2013).
  13. Y. Aykut, ACS Appl. Mater. Interfaces, 4, 3405 (2012).
  14. Y. Xiao, G. Han, H. Zhou, Y. Li and J-Y. Lin, Electrochim. Acta, 155, 103 (2015).
  15. P. Li, J. Wu, J. Lin, M. Huang, Y. Huang and Q. Li, Sol. Energy, 83, 845 (2009).
  16. F. Gong, H. Wang, X. Xu, G. Zhou and Z-S. Wang, J. Am. Chem. Soc., 134, 10953 (2012).
  17. J. Gong, J. Liang and K. Sumathy, Renew. Sustain. Energy Rev., 16, 5848 (2012).
  18. M. Gratzel, Inorg. Chem., 44, 6841 (2005).
  19. J. Wu, Q. Li, L. Fan, Z. Lan, P. Li, J. Lin and S. Hao, J. Power Sources, 181, 172 (2008).
  20. H-R. An and H-J. Ahn, Korean J. Mater. Res., 24, 565 (2014).

Cited by

  1. Ni Nanoparticles-Graphitic Carbon Nanofiber Composites for Pt-Free Counter Electrode in Dye-Sensitized Solar Cells vol.26, pp.11, 2016,


Supported by : Seoul National University of Science & Technology