Effect of H2S Concentration and Sulfurization Temperature on the Properties of Cu2ZnSnS4 Thin Films

  • Arepalli, Vinaya Kumar ;
  • Kim, Eui-Tae
  • Received : 2015.10.04
  • Accepted : 2015.11.01
  • Published : 2015.12.27


This study reports the effects of $H_2S$ gas concentration on the properties of $Cu_2ZnSnS_4(CZTS)$ thin films. Specifically, sulfurization process with low $H_2S$ concentrations of 0.05% and 0.1%, along with 5% $H_2S$ gas, was studied. CZTS films were directly synthesized on Mo/Si substrates by chemical bath deposition method using copper sulfate, zinc sulfate heptahydrate, tin chloride dihydrate, and sodium thiosulfate pentahydrate. Smooth CZTS films were grown on substrates at optimized chemical bath deposition condition. The CZTS films sulfurized at low $H_2S$ concentrations of 0.05 % and 0.1% showed very rough and porous film morphology, whereas the film sulfurized at 5% $H_2S$ yielded a very smooth and dense film morphology. The CZTS films were fully crystallized in kesterite crystal form when they were sulfurized at $500^{\circ}C$ for 1 h. The kesterite CZTS film showed a reasonably good room-temperature photoluminescence spectrum that peaked in a range of 1.4 eV to 1.5 eV, consistent with the optimal bandgap for CZTS solar cell applications.




  1. K. Ito and T. Nakazawa, Jpn. J. Appl. Phys., 27, 2094 (1988).
  2. H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani and S. Miyajima, Sol. Energy Mater. Sol. Cells, 65, 141 (2001).
  3. K. Jimbo, R. Kimura, T. Kamimura, S. Yamada, W. S. Maw, H. Araki, K. Oishi and H. Katagiri, Thin Solid Films, 515, 5997 (2007).
  4. S. M. Pawar, A. V. Moholkar, I. K. Kim, S. W. Shin, J. H. Moon, J. I. Rhee and J. H. Kim, Curr. Appl. Phys., 10, 565 (2010).
  5. A. V. Kumar, N. K. Park and E. T. Kim, Phys. Status Solidi A, 211, 1857 (2014).
  6. N. Kamoun, H. Bouzouita and B. Rezig, Thin Solid Films, 515, 5949 (2007).
  7. C. C. Surya, C. P. Chan, H. Lam and K. Y. Wong, Sol. Energy Mater. Sol. Cells, 94, 207 (2010).
  8. K. Tanaka, N. Moritake and H. Uchiki, Sol. Energy Mater. Sol. Cells, 91, 1199 (2007).
  9. W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu and D. B. Mitzi, Adv. Energy Mater, 4, 1301465 (2013).
  10. J. He, L. Sun, K. Zhang, W. Wang, J. Jiang, Y. Chen, P. Yang and J. Chu, Appl. Surf. Sci., 264, 133 (2013).
  11. J. He, L. Sun, Y. Chen, J. Jiang, P. Yang, J. Chu, J. Power Sources, 273, 600 (2015).
  12. M. I. Amal and K. H. Kim, Thin Solid Films, 534, 144 (2013).
  13. K. Maeda, K. Tanaka, Y. Fukui and H. Uchiki, Sol. Energy Mater. Sol. Cells, 95, 2855 (2011).
  14. P. A. Fernandes, P. M. P. Salome and A. F. Cunha, Thin Solid Films, 517, 2519 (2009).
  15. R. Caballero, E. Garcia-Llamas, J. M. Merino, M. Leon, I. Babichuk, V. Dzhagan, V. Strelchuk and M. Valakh, Acta Mater., 65, 412 (2014).


Supported by : National Research Foundation (NRF)