DOI QR코드

DOI QR Code

Nuclear Magnetic Resonance Study of 23Na Nucleus in NaBrO3 Single Crystal

  • Yeom, Tae Ho
  • Received : 2015.09.26
  • Accepted : 2015.11.10
  • Published : 2015.12.31

Abstract

The nuclear magnetic resonance of the $^{23}Na$ nucleus in a $NaBrO_3$ single crystal was investigated at the temperature range of 200 K~410 K. The tendencies of temperature dependence of the nuclear quadrupole coupling for the two magnetically inequivalent Na(I) and Na(II) centers are found to be opposite to each other. The nuclear spin-lattice relaxation mechanism of $^{23}Na$ in the $NaBrO_3$ crystal is investigated, and the result revealed that the Raman process is dominant in the temperature range investigated. The relaxation process of the $^{23}Na$ nuclear spins was well described by a single exponential function in time. The $T_1$ values of the $^{23}Na$ nuclei in the $NaBrO_3$ single crystal decreased with increasing temperature. The calculated activation energy for the $^{23}Na$ is $0.032{\pm}0.002eV$.

Keywords

magnetic resonance;$NaBrO_3$ crystal;relaxation mechanism;activation energy

References

  1. P. Franz, P. Egger, J. Hulliger, J. Findeisen, A. A. Kaminskii, and H. J. Eichler, Phys. Stat. Sol. (b) 210, R7 (1998). https://doi.org/10.1002/(SICI)1521-3951(199812)210:2<R7::AID-PSSB99997>3.0.CO;2-E
  2. J. Findeisen, J. Hulliger, A. A. Kaminskii, H. J. Eichler, R. Macdonald, P. Franz, and P. Peuser, Phys. Stat. Sol. (a) 172, R5 (1999). https://doi.org/10.1002/(SICI)1521-396X(199904)172:2<R5::AID-PSSA99995>3.0.CO;2-8
  3. R. W. G. Wyckoff, Crystal Structures, Inter-science Publishers, Inc., New York (1953).
  4. L. Pauling, The Nature of the Chemical Bond, Oxford Univ. Press, London (1952).
  5. K. Kano, J. Phys. Soc. Jan. 13, 975 (1958). https://doi.org/10.1143/JPSJ.13.975
  6. R. F. Tipsword, J. T. Allender, E. A. Stahl, and C. D. Williams, J. Chem. Phys. 49, 2464 (1968). https://doi.org/10.1063/1.1670436
  7. C. J. Whidden, C. D. Williams, and R. F. Tipsword, J. Chem. Phys. 50, 507 (1969). https://doi.org/10.1063/1.1670828
  8. D. D. Early, R. F. Tipsword, and C. D. Williams, J. Chem. Phys. 55, 460 (1971). https://doi.org/10.1063/1.1675548
  9. E. A. Stahl and R. F. Tipsword, Magn. Resonance in Chemistry 28, 95 (1990). https://doi.org/10.1002/mrc.1260280202
  10. H. Bayer, Z. Physik 130, 227 (1951). https://doi.org/10.1007/BF01337696
  11. T. C. Wang, Phys. Rev. 99, 566 (1955). https://doi.org/10.1103/PhysRev.99.566
  12. T. P. Das and E. L. Han, Nuclear Quadrupole Resonance Spectroscopy, Academic Press, New York (1958) Chap. 1.
  13. W. W. Simmons, W. J. O'Sullivan, and W. A. Robinson, Phys. Rev. 127, 1168 (1962). https://doi.org/10.1103/PhysRev.127.1168
  14. W. E. Blumberg, Phys. Rev. 119, 79 (1960). https://doi.org/10.1103/PhysRev.119.79
  15. A. Abragam, The Principles of Nuclear magnetism, Oxford Univ. Press, Oxford (1961) Chaps. I and IX.
  16. R. L. Mieher, Phys. Rev. 125, 1537 (1962). https://doi.org/10.1103/PhysRev.125.1537
  17. J. Van Kranendonk, Theory of quadrupolar nuclear spinlattice relaxation, Physica 20, 781 (1954). https://doi.org/10.1016/S0031-8914(54)80191-1