DOI QR코드

DOI QR Code

Effect of Bias Magnetic Field on Magnetoelectric Characteristics in Magnetostrictive/Piezoelectric Laminate Composites

  • Chen, Lei (Key Lab of Computer Vision and Intelligent Information System, Chongqing University of Arts and Sciences, College of Optoelectronic Engineering, Chongqing University) ;
  • Luo, Yulin (Engineering school, Cardiff University)
  • Received : 2015.06.28
  • Accepted : 2015.09.16
  • Published : 2015.12.31

Abstract

The magnetoelectric (ME) characteristics for Terfenol-D/PZT laminate composite dependence on bias magnetic field is investigated. At low frequency, ME response is determined by the piezomagnetic coefficient $d_{33,m}$ and the elastic compliance $s_{33}^H$ of magnetostrictive material, $d_{33,m}$ and $s_{33}^H$ for Terfenol-D are inherently nonlinear and dependent on $H_{dc}$, leading to the influence of $H_{dc}$ on low-frequency ME voltage coefficient. At resonance, the mechanical quality factor $Q_m$ dependences on $H_{dc}$ results in the differences between the low-frequency and resonant ME voltage coefficient with $H_{dc}$. In terms of ${\Delta}E$ effect, the resonant frequency shift is derived with respect to the bias magnetic field. Considering the nonlinear effect of magnetostrictive material and $Q_m$ dependence on $H_{dc}$c, it predicts the low-frequency and resonant ME voltage coefficients as a function of the dc bias magnetic field. A good agreement between the theoretical results and experimental data is obtained and it is found that ME characteristics dependence on $H_{dc}$ are mainly influenced by the nonlinear effect of magnetostrictive material.

Acknowledgement

Supported by : National Natural Science Foundation of China, China Postdoctoral Science Foundation, Chongqing Postdoctoral Science Special Foundation

References

  1. M. Fiebig, J. Phys. D: Appl. Phys. 38, R123 (2005). https://doi.org/10.1088/0022-3727/38/8/R01
  2. J. Ryu, S. Priya, A. V. Carazo, and K. Uchino, J. Am. Ceram. Soc. 84, 2905 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb01113.x
  3. K. Prabahar, Josephine Mirunalini, N. Shara Sowmya, J. Arout Chelvane, M. Mahendiran, S. V. Kamat, and A. Srinivas, Physica B 448, 336 (2014). https://doi.org/10.1016/j.physb.2014.03.052
  4. S. X. Dong, J. F. Li, and D. Viehland, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 50, 1253 (2003). https://doi.org/10.1109/TUFFC.2003.1244741
  5. C. W. Nan, M. Li, and J. H. Huang, Phys. Rev. B 63, 144415 (2001). https://doi.org/10.1103/PhysRevB.63.144415
  6. Y. X. Liu, J. G. Wan, J. M. Liu, and C. W. Nan, J. Appl. Phys. 94, 5118 (2003). https://doi.org/10.1063/1.1613811
  7. H. M. Zhou, L. M. Xuan, C. Li, and J. Wei, J. Magn. Magn. Mater. 323, 2802 (2011). https://doi.org/10.1016/j.jmmm.2011.06.018
  8. C. W. Nan, M. Li, X. Feng, and S. Yu, Appl. Phys. Lett. 78, 2527 (2001). https://doi.org/10.1063/1.1367293
  9. R. Belouadah, D. Guyomar, B. Guiffard, and J. W. Zhang, Physica B 406, 2821 (2011). https://doi.org/10.1016/j.physb.2011.04.036
  10. S. Priya, R. Islam, S. Dong, and D. Viehland, J. Electroceram. 19, 147 (2007).
  11. Y. Yao, Y. Hou, S. Dong, X. Huang, Q. Yu, and X. Li, J. Alloys Compd. 509, 6920 (2011). https://doi.org/10.1016/j.jallcom.2011.03.184
  12. X. J. Zheng and X. E. Liu, J. Appl. Phys. 97, 053901 (2005). https://doi.org/10.1063/1.1850618
  13. M. B. Moffet, A. E. Clark, M. Wun-Fogle, J. Linberg, J. P. Teter, and E. A. McLaughlin, J. Acoust. Soc. Am. 89, 1448 (1991). https://doi.org/10.1121/1.400678
  14. K. B. Hathaway and A. E. Clark, MRS Bull. 18, 34 (1993). https://doi.org/10.1557/S0883769400037337
  15. M. E. H. Benbouzid, G. Reyne, and G. Meunier, IEEE Trans. Magn. 31, 1821 (1995). https://doi.org/10.1109/20.376391