Effect of Bias Magnetic Field on Magnetoelectric Characteristics in Magnetostrictive/Piezoelectric Laminate Composites

  • Chen, Lei (Key Lab of Computer Vision and Intelligent Information System, Chongqing University of Arts and Sciences, College of Optoelectronic Engineering, Chongqing University) ;
  • Luo, Yulin (Engineering school, Cardiff University)
  • Received : 2015.06.28
  • Accepted : 2015.09.16
  • Published : 2015.12.31


The magnetoelectric (ME) characteristics for Terfenol-D/PZT laminate composite dependence on bias magnetic field is investigated. At low frequency, ME response is determined by the piezomagnetic coefficient $d_{33,m}$ and the elastic compliance $s_{33}^H$ of magnetostrictive material, $d_{33,m}$ and $s_{33}^H$ for Terfenol-D are inherently nonlinear and dependent on $H_{dc}$, leading to the influence of $H_{dc}$ on low-frequency ME voltage coefficient. At resonance, the mechanical quality factor $Q_m$ dependences on $H_{dc}$ results in the differences between the low-frequency and resonant ME voltage coefficient with $H_{dc}$. In terms of ${\Delta}E$ effect, the resonant frequency shift is derived with respect to the bias magnetic field. Considering the nonlinear effect of magnetostrictive material and $Q_m$ dependence on $H_{dc}$c, it predicts the low-frequency and resonant ME voltage coefficients as a function of the dc bias magnetic field. A good agreement between the theoretical results and experimental data is obtained and it is found that ME characteristics dependence on $H_{dc}$ are mainly influenced by the nonlinear effect of magnetostrictive material.


Supported by : National Natural Science Foundation of China, China Postdoctoral Science Foundation, Chongqing Postdoctoral Science Special Foundation


  1. M. Fiebig, J. Phys. D: Appl. Phys. 38, R123 (2005).
  2. J. Ryu, S. Priya, A. V. Carazo, and K. Uchino, J. Am. Ceram. Soc. 84, 2905 (2001).
  3. K. Prabahar, Josephine Mirunalini, N. Shara Sowmya, J. Arout Chelvane, M. Mahendiran, S. V. Kamat, and A. Srinivas, Physica B 448, 336 (2014).
  4. S. X. Dong, J. F. Li, and D. Viehland, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 50, 1253 (2003).
  5. C. W. Nan, M. Li, and J. H. Huang, Phys. Rev. B 63, 144415 (2001).
  6. Y. X. Liu, J. G. Wan, J. M. Liu, and C. W. Nan, J. Appl. Phys. 94, 5118 (2003).
  7. H. M. Zhou, L. M. Xuan, C. Li, and J. Wei, J. Magn. Magn. Mater. 323, 2802 (2011).
  8. C. W. Nan, M. Li, X. Feng, and S. Yu, Appl. Phys. Lett. 78, 2527 (2001).
  9. R. Belouadah, D. Guyomar, B. Guiffard, and J. W. Zhang, Physica B 406, 2821 (2011).
  10. S. Priya, R. Islam, S. Dong, and D. Viehland, J. Electroceram. 19, 147 (2007).
  11. Y. Yao, Y. Hou, S. Dong, X. Huang, Q. Yu, and X. Li, J. Alloys Compd. 509, 6920 (2011).
  12. X. J. Zheng and X. E. Liu, J. Appl. Phys. 97, 053901 (2005).
  13. M. B. Moffet, A. E. Clark, M. Wun-Fogle, J. Linberg, J. P. Teter, and E. A. McLaughlin, J. Acoust. Soc. Am. 89, 1448 (1991).
  14. K. B. Hathaway and A. E. Clark, MRS Bull. 18, 34 (1993).
  15. M. E. H. Benbouzid, G. Reyne, and G. Meunier, IEEE Trans. Magn. 31, 1821 (1995).