Relaxor Behaviors in xBaTiO3-(1-x)CoFe2O4 Materials

  • Dung, Cao Thi My ;
  • Thi, Nhu Hoa Tran ;
  • Ta, Kieu Hanh Thi ;
  • Tran, Vinh Cao ;
  • Nguyen, Bao Thu Le ;
  • Le, Van Hieu ;
  • Do, Phuong Anh ;
  • Dang, Anh Tuan ;
  • Ju, Heongkyu ;
  • Phan, Bach Thang
  • Received : 2015.09.11
  • Accepted : 2015.12.09
  • Published : 2015.12.31


Dielectric properties of $xBaTiO_3-(1-x)CoFe_2O_4$ composite materials have been investigated. Dielectric properties of $BaTiO_3$, $CoFe_2O_4$ and $0.5BaTiO_3-0.5CoFe_2O_4$ samples show frequency dependence, which is classified as relaxor behavior with different relaxing degree. The relaxor behaviors were described using the modified Curier-Weiss and Vogel-Fulcher laws. Among three above samples, the $BaTiO_3$ sample has highest relaxing degree. Photoluminescence spectral indicated defects, which might in turn control relaxing degree.


xBaTiO3-(1-x)CoFe2O4;dielectric properties;relaxing degree;modified Curie-Weiss law;Vogel-Fulcher law


  1. Tanmoy Maiti, PhD thesis, The Pennsylvania State University, USA (2007).
  2. L. Mitoseriu, D. Marre, A. S. Siri, A. Stancu, C. E. Fedor, and P. Nanni, J. Optoelectro, Adv. Mater. 6, 723 (2004).
  3. A. A. Bokov and Z.-G. Ye, Phys. Rev. B 74, 132102 (2006).
  4. J. Miao, X. G. Xu, Y. Jiang, and B. R. Zhao, Appl. Phys. Lett. 95, 132905 (2009).
  5. L. Yan, J. F. Li, C. Suchicital, and D. Viehland, Appl. Phys. Lett. 89, 132913 (2006).
  6. A. Kumar, I. Rivera, R. S. Katiyar, and J. F. Scott, Appl. Phys. Lett. 92, 132913 (2008).
  7. W. Peng, N. Lemee, J.-L. Dellis, V. V. Shvartsman, P. Borisov, W. Kleemann, Z. Trontelj, J. Holc, M. Kosec, R. Blinc, and M. G. Karkut, Appl. Phys. Lett. 95, 132507 (2009).
  8. A. Levstik, V. Bobnar, C. Filipic, J. Holc, M. Kosec, R. Blinc, Z. Trontelj, and Z. Jaglicic, Appl. Phys. Lett. 91, 012905 (2007).
  9. Z. Hu, T. Nan, X. Wang, M. Staruch, Y. Gao, P. Finkel, and N. X. Sun, Appl. Phys. Lett. 106, 022901 (2015).
  10. C. E. Ciomaga, R. Calderone, M. T. Buscaglia, M. Viviani, V. Buscaglia, L. Mitoseriu, A. Stancu, and P. Nanni, J. Optoelec. Adv. Mater. 8, 944 (2006).
  11. S. Q. Ren, L. Q. Weng, S. H. Song, F. Li, J. G. Wan, and M. Seng, J. Mater. Sci. 40, 4375 (2005).
  12. J. X. Zhang, J. Y. Dai, W. Lu, and H. L. W. Chan, J. Mater. Sci. 44, 5143 (2009).
  13. G. V. Duong, R. S. Turtelli, and R. Groessinger, J. Magn. Magn. Mater. 322, 1581 (2010).
  14. H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes- Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh, Science 303, 661(2004).
  15. D. Ghosh, H. Han, J. C. Nino, G. Subhash, and J. L. Jones, J. Am. Ceram. Soc. 95, 2504 (2012).
  16. C. S. Antoniak, D. Schmitz, P. Borisov, F. M. F. D. Groot, S. Stienen, A. Warland, B. Krumme, R. Feyerherm, E. Dudzik, and W. K. H. Wende, Nat. Com. 4, 1 (2013).
  17. C. X. Li, B. Yang, S. T. Zhang, R. Zhang, Y. Sun, H. J. Zhang, and W. W. Cao, J. Am. Ceram. Soc. 97, 816 (2014).
  18. S. Haffer, C. Luder, T. Walther, R. Koferstein, S. G. Ebbinghaus, and M. Tiemann, Micro. Meso. Mater. 196, 300 (2014).
  19. S. Ren, M. Laver, and M. Wuttig, Appl. Phys. Lett. 95, 153504 (2009).
  20. T. Maiti, R. Guo, and A. S. Bhalla, J. Appl. Phys. 100, 114109 (2006).
  21. D. Viehland, J. F. Li, S. J. Jang, L. E. Cross, and M. Wuttig, Phys. Rev. B 43, 8316 (1991).
  22. D. P. Pham, H. T. Nguyen, B. T. Phan, V. D. Hoang, S. Maenosono, and C. V. Tran, Thin Solid Films 583, 201 (2015).


Supported by : Vietnam National University