DOI QR코드

DOI QR Code

Relaxor Behaviors in xBaTiO3-(1-x)CoFe2O4 Materials

  • Dung, Cao Thi My (Faculty of Materials Science, University of Science, Vietnam National University) ;
  • Thi, Nhu Hoa Tran (Faculty of Materials Science, University of Science, Vietnam National University) ;
  • Ta, Kieu Hanh Thi (Faculty of Materials Science, University of Science, Vietnam National University) ;
  • Tran, Vinh Cao (Laboratory of Advanced Materials, University of Science, Vietnam National University) ;
  • Nguyen, Bao Thu Le (Department of Mathematics and Physics, University of Information Technology, Vietnam National University) ;
  • Le, Van Hieu (Faculty of Materials Science, University of Science, Vietnam National University) ;
  • Do, Phuong Anh (Department of Solid State Physics, Faculty of Physics, Hue University) ;
  • Dang, Anh Tuan (Department of Solid State Physics, Faculty of Physics, Hue University) ;
  • Ju, Heongkyu (Department of Nano-Physics, Gachon University) ;
  • Phan, Bach Thang (Faculty of Materials Science, University of Science, Vietnam National University)
  • Received : 2015.09.11
  • Accepted : 2015.12.09
  • Published : 2015.12.31

Abstract

Dielectric properties of $xBaTiO_3-(1-x)CoFe_2O_4$ composite materials have been investigated. Dielectric properties of $BaTiO_3$, $CoFe_2O_4$ and $0.5BaTiO_3-0.5CoFe_2O_4$ samples show frequency dependence, which is classified as relaxor behavior with different relaxing degree. The relaxor behaviors were described using the modified Curier-Weiss and Vogel-Fulcher laws. Among three above samples, the $BaTiO_3$ sample has highest relaxing degree. Photoluminescence spectral indicated defects, which might in turn control relaxing degree.

Acknowledgement

Supported by : Vietnam National University

References

  1. Tanmoy Maiti, PhD thesis, The Pennsylvania State University, USA (2007).
  2. L. Mitoseriu, D. Marre, A. S. Siri, A. Stancu, C. E. Fedor, and P. Nanni, J. Optoelectro, Adv. Mater. 6, 723 (2004).
  3. A. A. Bokov and Z.-G. Ye, Phys. Rev. B 74, 132102 (2006). https://doi.org/10.1103/PhysRevB.74.132102
  4. J. Miao, X. G. Xu, Y. Jiang, and B. R. Zhao, Appl. Phys. Lett. 95, 132905 (2009). https://doi.org/10.1063/1.3242009
  5. L. Yan, J. F. Li, C. Suchicital, and D. Viehland, Appl. Phys. Lett. 89, 132913 (2006). https://doi.org/10.1063/1.2357926
  6. A. Kumar, I. Rivera, R. S. Katiyar, and J. F. Scott, Appl. Phys. Lett. 92, 132913 (2008). https://doi.org/10.1063/1.2906371
  7. W. Peng, N. Lemee, J.-L. Dellis, V. V. Shvartsman, P. Borisov, W. Kleemann, Z. Trontelj, J. Holc, M. Kosec, R. Blinc, and M. G. Karkut, Appl. Phys. Lett. 95, 132507 (2009). https://doi.org/10.1063/1.3242377
  8. A. Levstik, V. Bobnar, C. Filipic, J. Holc, M. Kosec, R. Blinc, Z. Trontelj, and Z. Jaglicic, Appl. Phys. Lett. 91, 012905 (2007). https://doi.org/10.1063/1.2754354
  9. Z. Hu, T. Nan, X. Wang, M. Staruch, Y. Gao, P. Finkel, and N. X. Sun, Appl. Phys. Lett. 106, 022901 (2015). https://doi.org/10.1063/1.4905855
  10. C. E. Ciomaga, R. Calderone, M. T. Buscaglia, M. Viviani, V. Buscaglia, L. Mitoseriu, A. Stancu, and P. Nanni, J. Optoelec. Adv. Mater. 8, 944 (2006).
  11. S. Q. Ren, L. Q. Weng, S. H. Song, F. Li, J. G. Wan, and M. Seng, J. Mater. Sci. 40, 4375 (2005). https://doi.org/10.1007/s10853-005-1057-1
  12. J. X. Zhang, J. Y. Dai, W. Lu, and H. L. W. Chan, J. Mater. Sci. 44, 5143 (2009). https://doi.org/10.1007/s10853-009-3512-x
  13. G. V. Duong, R. S. Turtelli, and R. Groessinger, J. Magn. Magn. Mater. 322, 1581 (2010). https://doi.org/10.1016/j.jmmm.2009.09.022
  14. H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes- Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh, Science 303, 661(2004). https://doi.org/10.1126/science.1094207
  15. D. Ghosh, H. Han, J. C. Nino, G. Subhash, and J. L. Jones, J. Am. Ceram. Soc. 95, 2504 (2012). https://doi.org/10.1111/j.1551-2916.2012.05221.x
  16. C. S. Antoniak, D. Schmitz, P. Borisov, F. M. F. D. Groot, S. Stienen, A. Warland, B. Krumme, R. Feyerherm, E. Dudzik, and W. K. H. Wende, Nat. Com. 4, 1 (2013).
  17. C. X. Li, B. Yang, S. T. Zhang, R. Zhang, Y. Sun, H. J. Zhang, and W. W. Cao, J. Am. Ceram. Soc. 97, 816 (2014). https://doi.org/10.1111/jace.12702
  18. S. Haffer, C. Luder, T. Walther, R. Koferstein, S. G. Ebbinghaus, and M. Tiemann, Micro. Meso. Mater. 196, 300 (2014). https://doi.org/10.1016/j.micromeso.2014.05.023
  19. S. Ren, M. Laver, and M. Wuttig, Appl. Phys. Lett. 95, 153504 (2009). https://doi.org/10.1063/1.3241999
  20. T. Maiti, R. Guo, and A. S. Bhalla, J. Appl. Phys. 100, 114109 (2006). https://doi.org/10.1063/1.2392996
  21. D. Viehland, J. F. Li, S. J. Jang, L. E. Cross, and M. Wuttig, Phys. Rev. B 43, 8316 (1991). https://doi.org/10.1103/PhysRevB.43.8316
  22. D. P. Pham, H. T. Nguyen, B. T. Phan, V. D. Hoang, S. Maenosono, and C. V. Tran, Thin Solid Films 583, 201 (2015). https://doi.org/10.1016/j.tsf.2015.03.068