Journal of Magnetics
- Volume 20 Issue 4
- /
- Pages.400-404
- /
- 2015
- /
- 1226-1750(pISSN)
- /
- 2233-6656(eISSN)
DOI QR Code
Reduction of Electromagnetic Force in AC Distributed Winding of Fault Current Limiter under Short-Circuit Condition
- Ghabeli, Asef (Young Researchers and Elite Club, Sari Branch, Islamic Azad University) ;
- Yazdani-Asrami, Mohammad (Young Researchers and Elite Club, Sari Branch, Islamic Azad University) ;
- Doroudi, Aref (Faculty of Electrical Engineering, Shahed University) ;
- Gholamian, S. Asghar (Electrical Machinery Laboratory, Faculty of Electrical and Computer Engineering, Babol University of Technology)
- Received : 2015.06.10
- Accepted : 2015.07.22
- Published : 2015.12.31
Abstract
Various kinds of winding arrangements can be used to enable fault current limiters (FCL) to tolerate higher forces without resulting in a substantial increase in construction and fabrication costs. In this paper, a distributed winding arrangement is investigated in terms of its effects on the short-circuit forces in a three-phase FCL. The force magnitudes of the AC supplied windings are calculated by employing a finite element-based model in the time stepping procedure. The leakage flux and radial and axial force magnitudes obtained from the simulation are compared to those obtained from a conventional winding arrangement. The comparison shows that the distributed winding arrangement significantly reduces the radial and, especially, the axial force magnitudes.
File
References
- Kalsi, Swarn S. and Alex Malozemoff, Power Engineering Society General Meeting 2, 1426 (2004).
- Y. Xin, W. Gong, X. Niu, Z. Cao, J. Zhang, B. Tian, H. Xi, Y. Wang, H. Hong, Y. Zhang, B. Hou, and X. Yang, IEEE Trans. Appl. Supercond. 17, 1760 (2007). https://doi.org/10.1109/TASC.2007.898181
- Abdul Rahman, T. T. Lie, and K. Prasad, IEEE Trans. Appl. Supercond. 22, 5501211 (2012). https://doi.org/10.1109/TASC.2012.2221089
- Abdul Rahman, T. T. Lie, and K. Prasad, IEEE Trans. Appl. Supercond. 22, 5500108 (2012). https://doi.org/10.1109/TASC.2011.2173571
- Nadim Mahomed, Energize 12, 36 (2011).
- G. B. Kumbhar and S. V. Kulkarni, IEEE Trans. Power Delivery 22, 936 (2007). https://doi.org/10.1109/TPWRD.2007.893442
- G. P. Peter, International Journal of Advancements in Technology 2, 142 (2011).
- Jawad Faiz, Bashir Mahdi Ebrahimi, and Tahere Noori, IEEE Trans. Magn. 44, 590 (2008). https://doi.org/10.1109/TMAG.2008.917819
- H. M. Ahn, J. Y. Lee, J. K. Kim, Y. H. Oh, S. Y. Jung, and S. C. Hahn, IEEE Trans. Ind. Appl. 47, 1267 (2011). https://doi.org/10.1109/TIA.2011.2126031
- Heydari, Hossein, and Faramarz Faghihi, IEEE Trans. Appl. Supercond. 20, 2276 (2010). https://doi.org/10.1109/TASC.2010.2049356
- S. L. Ho, Y. Li, Ho-ching Chris Wong, S. H. Wang, and R. Y. Tang, IEEE Trans. Magn. 40, 687 (2004). https://doi.org/10.1109/TMAG.2004.824801
- G. Bertagnolli, ABB Ltd. (2007).
- Hyun-Mo Ahn, Yeon-Ho Oh, Joong-Kyoung Kim, Jae- Sung Song, and Sung-Chin Hahn, IEEE Trans. Magn. 48, 819 (2012). https://doi.org/10.1109/TMAG.2011.2174212