웨어러블 로봇 인터페이스를 위한 회귀 기법 기반 손목 움직임 추정

DOI QR코드

DOI QR Code

박기희;이성환
Park, Ki-Hee;Lee, Seong-Whan

  • 투고 : 2015.07.22
  • 심사 : 2015.09.23
  • 발행 : 2015.12.15

초록

최근 웨어러블 로봇에 활용이 가능한 실용적인 웨어러블 로봇 인터페이스 개발이 활발하게 이루어지고 있다. 본 논문은 인간의 생체신호 중 근전도를 활용하여, 회귀 기법 기반 연속적인 손목 움직임 의도 추정 방법을 제안한다. 실생활에서 사용자의 상지 자세 변화는 근전도 신호를 변조시켜 성능 저하의 주요한 원인이 되는데, 이를 해결하기 위해 서로 다른 상지 자세에서 학습된 회귀 기법 기반 움직임 추정모델을 통합함으로써 상지 자세 변화에도 강인한 연속적인 손목 움직임 의도 추정 방법을 제안한다. 실험결과에서 서로 다른 상지 자세에서 손목 움직임 의도를 추정하였을 때 제안 방법의 성능이 기존 방법보다 우수함을 확인하였다.

키워드

웨어러블 로봇 인터페이스;근전도;패턴인식;회귀 기법

참고문헌

  1. T. S. Saponas, D. S. Tan, D. Morris, J. Turner, and J. A. Landay, "Making Muscle-Computer Interfaces More Practical," SIGCHI Conference on Human Factors in Computing Systems (CHI 2010), Atlanta, GA, USA, Apr. 10-15, 2010.
  2. N. Jiang, S. Dosen, K.-R. Muller, and D. Farina, "Myoelectric Control of Artificial Limbs-Is There a Need to Change Focus?," IEEE Signal Processing Magazine, Vol. 29, No. 5, pp. 152-150, 2012. https://doi.org/10.1109/MSP.2012.2203480
  3. A. Fougner, E. Scheme, A. D. C. Chan, K. Englehart, and O. Stavdahl, "Resolving the Limb Position Effect in Myoelectric Pattern Recognition," IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 19, No. 6, pp. 644-651, 2011. https://doi.org/10.1109/TNSRE.2011.2163529
  4. Y. Geng, P. Zhou, and G. Li, "Toward Attenuating the Impact of Arm Positions on Electromyography Pattern-Recognition based Motion Classification in Transradial Amputees," Journal of NeuroEngineering and Rehabilitation, Vol. 9, No. 1, pp. 74, 2012. https://doi.org/10.1186/1743-0003-9-74
  5. R. N. Khushaba, M. Takruri, J. V. Miro, and S. Kodagoda, "Towards Limb Position Invariant Myoelectric Pattern Recognition using Time-dependent Spectral Features," Neural Networks, Vol. 55, pp. 42-58, 2014. https://doi.org/10.1016/j.neunet.2014.03.010
  6. J. M. Hahne, F. Biessmann, N. Jiang, H. Rehbaum, D. Farina, F. C. Meinecke, K.-R. Muller, and L. C. Parra, "Linear and Nonlinear Regression Techniques for Simultaneous and Proportional Myoelectric Control," IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 22, No. 2, pp. 269-279, 2014. https://doi.org/10.1109/TNSRE.2014.2305520
  7. C. M. Bishop, Pattern Recognition and Machine Learning. Springer New York, 2006.
  8. H.-I. Suk and S.-W. Lee, "A Novel Bayesian Framework for Discriminative Feature Extraction in Brain-Computer Interfaces," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 35, No. 2, pp. 286-299, 2013. https://doi.org/10.1109/TPAMI.2012.69
  9. J.-H. Kim, F. Biessmann, and S.-W. Lee, "Decoding Three-dimensional Trajectory of Executed and Imagined Arm Movements from Electroencephalogram Signals," IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 12, No. 5, pp. 867-876, 2015.
  10. J. C. Platt, "Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods," in Advances in Large Margin Classifiers, A. J. Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans, Eds. Cambridge: MIT Press, 2000, pp. 1-11.
  11. C.-C. Chang and C.-J. Lin, "LIBSVM: A Library for Support Vector Machines," ACM Transactions on Intelligent Systems and Technology, Vol. 2, No. 3, pp. 1-27, 2011.