IoT 디바이스 기반 노화진단을 위한 개념적 프레임워크

DOI QR코드

DOI QR Code

이재유;박진철;김수동
Lee, Jae Yoo;Park, Jin Cheul;Kim, Soo Dong

  • 투고 : 2015.07.31
  • 심사 : 2015.10.09
  • 발행 : 2015.12.15

초록

사물인터넷 컴퓨팅의 등장으로 다양한 사물인터넷 디바이스를 통해 사용자에 대한 건강 컨텍스트의 수집과 수집된 건강 컨텍스트를 분석하여 노화진단이 가능해졌다. 하지만, 기존의 노화진단 기법들은 서로 다른 고정된 노화진단요소들을 사용하여 사용자에 따라 획득 가능한 건강 컨텍스트의 가변성을 고려하지 않아서 새로운 노화진단요소의 추가 및 삭제에 대해 동적 대응이 힘들다. 본 논문에서는 다양한 사물인터넷 디바이스를 기반으로 노화진단에 필요한 다양한 노화진단 요소를 수집하고, 사용자마다 가변적인 노화진단 요소의 구성에 따라 동적으로 적응 가능한 노화진단 프레임워크의 기법 및 설계를 제안한다. 제안된 노화진단 프레임워크를 이용하면 획득 가능한 건강 컨텍스트의 가변성과 관계없이 노화진단기법의 적용이 가능하며, 노화진단 요소의 동적 추가 및 삭제가 가능하다.

키워드

사물인터넷;건강 컨텍스트;노화진단;가변성;동적 적응

참고문헌

  1. Ortiz, A.M., et al., "The Cluster Between Internet of Things and Social Networks: Review and Research Challenges," IEEE Internet of Things Journal, Vol. 1, No. 3, pp. 206-215, 2014. https://doi.org/10.1109/JIOT.2014.2318835
  2. Y. Hao, et al., "DataClouds: Enabling Community- Based Data-Centric Services Over the Internet of Things," IEEE Internet of Things Journal, Vol. 1, No. 5, pp. 472-482, 2014. https://doi.org/10.1109/JIOT.2014.2353629
  3. X. Ge, et al., "Age Estimation from Human Body Images," Proc. of 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2013), pp. 2337-2341, May 2013.
  4. D. Guo, et al., "Image-Based Human Age Estimation by Manifold Learning and Locally Adjusted Robust Regression," IEEE Transactions on Image Processing, Vol. 17, No. 7, pp. 1178-1188, 2008. https://doi.org/10.1109/TIP.2008.924280
  5. Saxena, A.K. and Saxena, V.K., "Fingerprint based Human Age Group Estimation," Proc. of 2014 Annual IEEE India Conference (INDICON 2014), pp. 1-4, Dec. 2014.
  6. N. Silawat, et al., "Comparative Study of Impact of Age on Physiological Variables, Body Composition and Blood Cholesterol in Selected Physical Education Professionals," Journal of Exercise Science and Physiotherapy, Vol. 5, No. 1, pp. 62-66, 2009.
  7. Brach, J.S., et al., "The Association between Physical Function and Lifestyle Activity and Exercise in the Health, Aging and Body Composition Study," Journal of the American Geriatrics Society, Vol. 52, No. 4, pp. 502-509.
  8. D. Finkel, et al., "Genetic and Environmental Influences on Functional Age: A Twin Study," The Journals of Gerontology: Series B, Vol. 50B, No. 2, pp. 104-113, 1995. https://doi.org/10.1093/geronb/50B.2.P104
  9. Nakamura, E. and Miyao, K., "Further Evaluation of the Basic Nature of the Human Biological Aging Process Based on a Factor Analysis of Age-Related Physiological Variables," Journal of Gerontology: Biological Sciences, Vol. 58A, No. 3, pp. 196-204, 2003.
  10. X. Ge, et al., "Body-based Human Estimation at a Distance," Proc. of 2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW 2013), pp. 1-4, Jul. 2013.
  11. J. Lu and Y.P., Tan, "Regularized Locality Preserving Projections and its Extensions for Face Recognition," IEEE Transactions on Systems, Man, and Cybernetics: Part B, Cybernetics, Vol. 40, No. 3, pp. 958-963, 2010. https://doi.org/10.1109/TSMCB.2009.2032926
  12. D. Guo, et al., "Locally Adjusted Robust Regression for Human Age Estimation," Proc. of 2008 IEEE Workshop on Applications of Computer Vision (WACV 2008), pp. 1-6, Jan. 2008.
  13. Y. Bae, et al., "Development of Models for Predicting Biological Age (BA) with Physical, Biochemical, and Hormonal Parameters," Archives of Gerontology and Geriatrics, Vol. 47, No. 2, pp. 253-265, 2008. https://doi.org/10.1016/j.archger.2007.08.009
  14. S. Lee, et al., "A New PDA based Body Fat Measurement System," Proc. of Asian-Pacific Conference on Biomedical Engineering (EMBS 2003), pp. 44-45, Oct. 2003.

과제정보

연구 과제 주관 기관 : 한국연구재단