다양한 의료 분석 방식을 지원하는 효과적 추론 기법 설계 및 적용 지침

DOI QR코드

DOI QR Code

김문권;라현정;김수동
Kim, Moon Kwon;La, Hyun Jung;Kim, Soo Dong

  • 투고 : 2015.07.29
  • 심사 : 2015.09.14
  • 발행 : 2015.12.15

초록

다양한 개인 의료 장비들이 등장함에 따라 개인 의료 컨텍스트가 풍부하게 수집되고 있다. 이렇게 수집된 의료 컨텍스트를 분석함으로써 소프트웨어적으로 질병을 진단하기 위한 노력이 이어지고 있다. 본 논문에서는 의료 전문가들이 사용하는 의료 분석 기법을 정형화하고, 각 의료 기법을 실현화하기 위한 추론 기법을 식별하며, 추론기법의 적용 지침을 제시한다. 또한, 의료 기법을 제공하는 추론 시스템을 PoC 수준에서 개발하고, 실제 의료 컨텍스트를 분석하여 질병 진단 실험을 수행함으로써 제시하는 의료 분석 기법 및 추론 기법 적용 지침의 실효성과 그 효과를 검증한다.

키워드

의료 분석;정형 모델;데이터 처리;추론

참고문헌

  1. N. Amini, et al., "Accelerometer-based on-body sensor localization for health and medical monitoring applications," Pervasive Mob. Comput., Vol. 7, pp. 746-760, 2011. https://doi.org/10.1016/j.pmcj.2011.09.002
  2. M. Velikova and E. Systems, "Intelligent Disease Self-Management with Mobile Technology," IEEE Computer, Vol. 48, No. 2, pp. 32-39, 2015.
  3. S. Bauer, R. Wiest, L.-P. Nolte, and M. Reyes, "A survey of MRI-based medical image analysis for brain tumor studies," Physics in medicine and biology, Vol. 58, No. 13, pp. R97-129, 2013. https://doi.org/10.1088/0031-9155/58/13/R97
  4. E. Heiberg, J. Sjogren, M. Ugander, M. Carlsson, H. Engblom, and H. Arheden, "Design and validation of Segment--freely available software for cardiovascular image analysis," BMC medical imaging, Vol. 10, p. 1, 2010. https://doi.org/10.1186/1471-2342-10-1
  5. C. O. Rolim, F. L. Koch, C. B. Westphall, J. Werner, A. Fracalossi, and G. S. Salvador, "A cloud computing solution for patient's data collection in health care institutions," 2nd International Conference on eHealth, Telemedicine, and Social Medicine, eTELEMED 2010, Includes MLMB 2010; BUSMMed 2010, no. ii, pp. 95-99, 2010.
  6. P. Boiron and V. Dussaux, "Healthcare software as a service: The greater Paris region program experience," Proc. of IEEE International Enterprise Distributed Object Computing Workshop, EDOC, pp. 247-251, 2011.
  7. S. Mavandadi, S. Dimitrov, S. Feng, F. Yu, U. Sikora, O. Yaglidere, S. Padmanabhan, K. Nielsen, and A. Ozcan, "Distributed medical image analysis and diagnosis through crowd-sourced games: A malaria case study," PLoS ONE, Vol. 7, No. 5, pp. 1-8, 2012.
  8. D. D. Luxton, R. a. McCann, N. E. Bush, M. C. Mishkind, and G. M. Reger, "mHealth for mental health: Integrating smartphone technology in behavioral healthcare," Professional Psychology: Research and Practice, Vol. 42, No. 6, pp. 505-512, 2011. https://doi.org/10.1037/a0024485
  9. A. T. a Gomes, A. Ziviani, and V. M. Moreira, "SPLiCE : A Software Product Line for Healthcare," Proc. of the 2nd ACM SIGHIT International Health Informatics Symposium, pp. 721-725, 2012.
  10. Body Fat Percentage, Wikipedia, [Online]. Available: https://en.wikipedia.org/wiki/Body_fat_percentage (Accessed: Apr. 3, 2015)
  11. M. Ester, H. P. Kriegel, J. Sander, and X. Xu, "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise," Proc. of Second International Conference on Knowledge Discovery and Data Mining, pp. 226-231, 1996.
  12. H. Abdi and L. J. Williams, "Principal component analysis," Wiley Interdisciplinary Reviews: Computational Statistics, Vol. 2, No. 4, pp. 433-459, 2010. https://doi.org/10.1002/wics.101
  13. Classification algorithms, Wikipedia, [Online]. Available: http://en.wikipedia.org/wiki/Category:Classification_ algorithms (Accessed: Apr. 3, 2015)
  14. X. Wu, et. al., "Top 10 algorithms in data mining," Knowledge and Information Systems, Vol. 14, No. 1, pp. 1-37, 2007.
  15. J. Platt, "Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods," Advances in large margin classifiers, Vol. 10, No. 3, pp. 61-74, 1999.
  16. T. F. Wu, C. J. Lin, and R. C. Weng, "Probability estimates for multi-class classification by pairwise coupling," The Journal of Machine Learning Research, Vol. 5, pp. 975-1005, 2004.
  17. D. Comaniciu and P. Meer, "Mean shift: a robust approach toward feature space analysis," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 5, 2002.
  18. MongoDB, [Online]. Available: https://www.mongodb.org (Accessed: Apr. 3, 2015)
  19. F. Pedregosa, "Scikit-learn: Machine Learning in Python," Journal of Machine Learning Research, Vol. 12, pp. 2825-2830, 2011.
  20. The PTB Diagnostic ECG Database, PhysioNet, [Online]. Available: http://www.physionet.org/physiobank/ database/ptbdb/ (Accessed: Apr. 3, 2015)

과제정보

연구 과제 주관 기관 : 한국연구재단