DOI QR코드

DOI QR Code

Improvement of convergence speed in FDICA algorithm with weighted inner product constraint of unmixing matrix

분리행렬의 가중 내적 제한조건을 이용한 FDICA 알고리즘의 수렴속도 향상

Quan, Xingri;Bae, Keunsung
전성일;배건성

  • Received : 2015.11.12
  • Accepted : 2015.12.14
  • Published : 2015.12.31

Abstract

For blind source separation of convolutive mixtures, FDICA(Frequency Domain Independent Component Analysis) algorithms are generally used. Since FDICA algorithm such as Sawada FDICA, IVA(Independent Vector Analysis) works on the frequency bin basis with a natural gradient descent method, it takes much time to converge. In this paper, we propose a new method to improve convergence speed in FDICA algorithm. The proposed method reduces the number of iteration drastically in the process of natural gradient descent method by applying a weighted inner product constraint of unmixing matrix. Experimental results have shown that the proposed method achieved large improvement of convergence speed without degrading the separation performance of the baseline algorithms.

Keywords

Hadamard product form;FDICA

References

  1. F. Nesta, P. Svaizer, and M. Omologo, (2011). Convolutive BSS of short mixtures by ICA recursively regularized across rrequencies. Audio, Speech, and Language Processing, IEEE Transactions on, vol. 19, pp. 624-639. https://doi.org/10.1109/TASL.2010.2053027
  2. K. Matsuoka, (2002). Minimal distortion principle for blind source separation. Proceedings of the 41st SICE Annual Conference, vol.4, pp. 2138-2143.
  3. H. Sawada, S. Araki, R. Mukai, and S. Makino, (2007). Grouping separated frequency components by estimating propagation model parameters in frequency-domain blind source separation. Audio, Speech, and Language Processing, IEEE Transactions on, vol. 15, pp. 1592-1604. https://doi.org/10.1109/TASL.2007.899218
  4. H. Sawada, S. Araki, and S. Makino, (2007) Measuring dependence of bin-wise separated signals for permutation alignment in frequency-domain BSS. in Circuits and Systems, 2007. ISCAS 2007. IEEE International Symposium on, pp. 3247-3250.
  5. Lee, I. and Jamg, G. J., (2012). Independent vector analysis based on overlapped cliques of variable width for frequency-domain blind signal separation. EURASIP Journal on Advances in Signal Processing, vol. 2012, p. 113. https://doi.org/10.1186/1687-6180-2012-113
  6. Lee, I., Kim, T. and Lee, T.-W., (2007). Fast fixed-point independent vector analysis algorithms for convolutive blind source separation. Signal Processing, vol. 87, pp. 1859-1871. https://doi.org/10.1016/j.sigpro.2007.01.010
  7. S. Haykin, (2009). Neural networks and learning machines vol. 3. Prentice Hall.
  8. E. A. Lehmann. (2012). Image-source method: Matlab code implementation. www.eric-lehmann.com
  9. K. d. Donohue. (2009). Audio Systems Lab Experimental Data. http://www.engr.uky.edu/-donohue/audio/Data/audioexpdata.htm
  10. Quan, X. and Bae, K. (2014). Frequency bin alignment using covariance of power ratio of separated signals in multi-channel FD-ICA. Phonetics and Speech Sciences, Vol6, pp. 149-153. (전성일, 배건성, (2014). 다채널 주파수영역 독립성분분석에서 분리된 신호 전력비의 공분산을 이용한 주파수 빈 정렬. 말소리와 음성과학, vol. 6, pp. 149-153.) https://doi.org/10.13064/KSSS.2014.6.3.149
  11. P. Comon, (1994). Independent component analysis, a new concept?, Signal Processing, vol. 36, pp. 287-314. https://doi.org/10.1016/0165-1684(94)90029-9
  12. A. Hyvarinen, J. Karhunen, and E. Oja, (2001). Independent component analysis. John Wiley & Sons.
  13. A. Cichocki and S. Amari, (2003). Adaptive Blind Signal and Image Processing (Learning Algorithms and Applications). New York: John Wiley.
  14. A. J. Bell and T. J. Sejnowski, (1995). An information -maximization approach to blind separation and blind deconvolution. Neural Computation, vol. 7, pp. 1129-1159. https://doi.org/10.1162/neco.1995.7.6.1129
  15. S.-i. Amari, A. Cichocki, and H. H. Yang, (1996). A new learning algorithm for blind signal separation. Advances in neural information processing systems, pp. 757-763.
  16. A. Hyvarinen and E. Oja, (1997). A fast fixed-point algorithm for independent component analysis. Neural Computation, vol. 9, pp. 1483-1492. https://doi.org/10.1162/neco.1997.9.7.1483
  17. H. Sawada, R. Mukai, S. Araki, and S. Makino, (2001). A polar-coordinate based activation function for frequency domain blind source separation. in Proc. Int. Conf. ICA and BSS, pp. 663-668.
  18. Kim, T., H. T. Attias, Lee, S..-Y., and Lee, T.-W., (2007). Blind source separation exploiting higher-order frequency dependencies. Audio, Speech, and Language Processing, IEEE Transactions on, vol. 15, pp. 70-79. https://doi.org/10.1109/TASL.2006.872618

Acknowledgement

Supported by : 국방과학연구소