한국 제천 감초(Glycyrrhiza uralensis Fisher)의 추출 조건별 추출물의 항산화 및 항균 활성 평가

DOI QR코드

DOI QR Code

하지훈;정윤주;성준섭;김경미;김아영;부민민;서지영;이난희;박진오;박수남
Ha, Ji Hoon;Jeong, Yoon Ju;Seong, Joon Seob;Kim, Kyoung Mi;Kim, A Young;Fu, Min Min;Suh, Ji Young;Lee, Nan Hee;Park, Jino;Park, Soo Nam

  • 투고 : 2015.12.01
  • 심사 : 2015.12.16
  • 발행 : 2015.12.30

초록

본 연구는 한국 제천에서 재배된 감초(Glycyrrhiza uralensis Fisher, G. uralensis)를 대상으로 추출 조건(85% 에탄올, 추출 온도 및 시간)별로 추출한 추출물에 대하여 항산화 활성 및 항균 활성을 측정하고 이로부터 최적의 추출 조건을 선정하여 감초 추출물을 화장품 원료로 개발하기 위한 제조 공정에 활용하고자 하였다. 실험에 사용한 시료는, 각 추출 조건에서 얻어진 추출물을 농축하여 분말로 한 시료(시료-1)와 추출물을 농축하지 않고 추출물 원액을 그대로 사용한 시료(시료-2)이다. 항산화 활성은 라디칼 소거활성, 총항산화능, 활성 산소로 유도된 세포손상에서 세포보호효과를 측정하였다. 항균 활성은 피부 상재균에 대한 최소저해농도를 측정하였다. 1,1,-Diphenyl-2-picrylhydrazyl를 이용한 라디칼 소거활성에서, 시료-1은 $100{\mu}g/mL$에서 추출시간이 6 h일 때가 12 h일 때보다 약 10% 정도 더 큰 라디칼 소거활성을 나타냈다. 반면에 시료-2의 라디칼 소거활성은 추출 시간에 따른 유의적 차이를 나타내지 않았다. 한편 동일 온도에서 12 h 추출한 추출물의 수율은 6 h 추출한 경우의 수율보다 2.6배 더 컸다. 하지만 총 플라보노이드 함량은 1.1배 정도 더 크게 나타났다. 따라서 추출 시간이 길어도 총플라보노이드 함량은 거의 증가하지 않았음을 보여준다. 추출 조건별 감초 추출물의 라디칼 소거활성, 총항산화능 및 세포보호효과가 추출물의 수율을 반영한 것이 아니라 추출물 중에 함유된 총플라보노이드 함량에 의존함을 나타내고 있다. 피부 상재균에 대한 항균 활성은 추출 조건별 동일 농도(시료-1)에서 측정했을 때, 세 균주(S. aureus, B. subtilis, P. acnes)에 대해 25 및 $40^{\circ}C$에서 추출된 감초추출물($156{\mu}g/mL$)은 methyl paraben ($2,500{\mu}g/mL$)보다 약 16배 정도로 매우 큰 항균 활성을 나타냈다. 결론적으로 항산화 활성 및 항균 활성이 큰 감초 추출물의 최적 추출 조건은 85% 에탄올로 $40^{\circ}C$에서 6 h 추출한 추출물이 최적임을 확인할 수 있었다. 본 연구 결과, 화장품에 항산화 활성 및 항균 활성이 큰 감초 추출물을 원료화하기 위해서는 추출 조건별 추출물의 수율, 활성 성분의 수율, 추출물의 농도별 활성 평가와 추출 수율이 반영된 추출물 원액 자체의 활성을 종합 평가해서 추출 조건을 선정해서 원료의 제조 공정에 반영하는 것이 중요함을 시사한다.

키워드

Glycyrrhiza uralensis;antioxidative effect;antibacterial activity;various extraction conditions;cellular protective effect

참고문헌

  1. G. E. Rhie, M. H. Shin, J. Y. Seo, W. W. Choi, K. H. Cho, K. H. Kim, K. C. Park, H. C. Eun, and J. H. Chung, Aging- and photoaing-dependent changes of enzymic and nonenzymic antioxidants in the epidermis and dermis of human skin in vivo, J. Invest. Dermatol., 117(5), 1212 (2011).
  2. S. N. Park, Skin aging and antioxidant, J. Soc. Cosmet. Scientists Korea. 23(3), 75 (1997).
  3. L. C. Magdalena and Y. A. Tak, Reactive oxygen species, cellular redox system, and apoptosis, Free Radic. Biol. Med., 48(6), 749 (2010). https://doi.org/10.1016/j.freeradbiomed.2009.12.022
  4. J. C. Tilak, K. K. Boloor, S. S. Ketaki, S. G. Saroj, and R. D. Lele, Free raicals and antioxidants in human heaths: current status and future prospects, J. Assoc. Physicians. India, 52, 796 (2004).
  5. R. S. Sohala and W. C. Orrb, The redox stress hypothesis of aging, Free Radic. Biol. Med., 52(3), 539 (2012). https://doi.org/10.1016/j.freeradbiomed.2011.10.445
  6. M. G. Kosmadaki and B. A. Gilchrest, The role of telomeres in skin aging/photoaging, J. Micron., 35(3), 155 (2004). https://doi.org/10.1016/j.micron.2003.11.002
  7. S. Pillai, C. Oresajo, and J. Hayward, Ultraviolet radication and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation-a review, Int. J. Cosmet, Science, 27(1), 17 (2005). https://doi.org/10.1111/j.1467-2494.2004.00241.x
  8. J. L. Mccullough and K. M. Kelly, Prevention and treatment of skin aging, Ann. N.Y. Acad. Sci., 1067, 323 (2006). https://doi.org/10.1196/annals.1354.044
  9. E. Y. Ahn, D. H. Shin, N. I. Back, and J. A. Oh, Isolation and identification of antimicrobial active substance from G. uralensis, Korea J. Food Sci. Technol., 30(3), 680 (1998).
  10. J. H. Park, Q. Wu, K. H. Yoo, H. I. Yong, S. M. Cho, I. S. Chung, and N. I. Back, Cytotoxic effect of flavonoids from the roots of G. uralensis on human cancer cell lines, J. Appl. Biol. Chem., 54(1), 67 (2011). https://doi.org/10.3839/jabc.2011.012
  11. K. Kenji, S. Mao, N. Rie, M. Takashi, and S. Yukihiri, Constituent properties of licorice derived from G. uralensis, G. glabra, and G. inflata identified by genetic information, Biol. Pharm. Bull., 30, 1271 (2007). https://doi.org/10.1248/bpb.30.1271
  12. S. J. Kim, D. H. Kwoen, and J. H. Lee, Investigation of antioxidative activity and stability of ethanol extracts of licorice root (G. glabra), Korean J. Food Sci. Technol., 38, 584 (2006).
  13. H. K. Shim, M. H. Park, C. Choi, and M. J. Hae, Effect of G. glabra extracts on immune response, Korean J. Food Nutr., 10, 533 (1997).
  14. J. He, L. Chen, D. Heber, W. Shi, and Q. Lu, Antibacterial compounds from G. uralensis, J. Nat. Prod., 69, 121 (2006). https://doi.org/10.1021/np058069d
  15. S. B. Han, H. A. Gu, S. J. Kim, S. S. Kwon, H. S. Kim, S. H. Jeon, J. P. Hwang, and S. N. Park, Comparative study on antioxidative activity of G. uralensis and G. glabra extracts by country of origin, J. Soc. Cosmet. Scientists Korea, 39(1), 1, (2013). https://doi.org/10.15230/SCSK.2013.39.1.001
  16. H. J. Kim, J. Y. Bae, H. N. Jang, and S. N. Park, Comparative study on the antimicrobial activity of G. uralensis and G. glabra extracts with various countries of origin as natural antiseptics, Korean J. Microbiol. Biotechnol., 41(3), 358 (2013). https://doi.org/10.4014/kjmb.1307.07003
  17. H. J. Kim, H. N. Jang, J. Y. Bae, J. H. Ha, and S. N. Park, Antimicrobial activity, quantification and bactericidal activities of licorice active ingredients, Korean J. Microbiol. Biotechnol., 42(4), 386 (2014). https://doi.org/10.4014/kjmb.1410.10002
  18. H. J. Kim, H. N. Jang, J. Y. Bae, and S. N. Park, A study on the stability of the cream containing G. uralensis extract, J. Soc. Cosmet. Scientists Korea, 39(2), 117 (2013). https://doi.org/10.15230/SCSK.2013.39.2.117
  19. S. J. Kim, S. S. Kwon, E. R. Yu, and S. N. Park, Development of porous cellulose hydrogel for enhanced transdermal delivery of liquiritin and liquiritigenin as licorice flavonoids, Polymer (Korea), 38(5), 1 (2014). https://doi.org/10.7317/pk.2014.38.1.1
  20. S. S. Kwon, B. J. Kong, and S. N. Park, Physicochemical properties of pH-sensitive hydrogels based on hydroxyethyl cellulose-hyaluronic acid and for applications as transdermal delivery systems for skin lesions, Eur. J. Pharm. Biopharm., 92, 146 (2015). https://doi.org/10.1016/j.ejpb.2015.02.025
  21. J. Y. Bae, H. N. Jang, J. H. Ha, J. Park, J. Park, and S. N. Park, Antimicrobial activities of licorice extracts from various countries of origin according to extraction conditions, Korean J. Microbiol. Biotechnol., 42(4), 361 (2014). https://doi.org/10.4014/kjmb.1408.08002
  22. J. H. Ha, H. M. Lee, S. S. Kwon, H. S. Kim, M. J. Kim, S. H. Jeon, Y. M. Jeong, J. P. Hwang, J. Park, Y. Choi, J. Park, S. N. Park, and D. Park, Screening of effective extraction conditions for increasing antioxidant activities of licorice extracts from various countries of origin, J. Soc. Cosmet. Scientists Korea, 39(4), 259 (2013). https://doi.org/10.15230/SCSK.2013.39.4.259
  23. J. L. Rodriguez-Tudela, F. Barchiesi, J. Bille, E. Chryssanthou, M. Cuenca-Estrella, D. Denning, J. P. Donnelly, B. Dupont, W. Fegeler, C. Moore, M. Richardson, and P. E. Verweij, Method for the determination of minimum inhibitory concentration (MIC) by broth dilution of fermentative yeasts, Clin. Microbiol. Infect., 9(8), 1 (2003).

과제정보

연구 과제 주관 기관 : 서울과학기술대학교