Isolation and Characterization of Bacillus subtilis CA105 from Spent Mushroom (Pleurotus ostreatus) Substrates

느타리버섯 수확후배지로부터 분리한 Bacillus subtilis CA105의 특성

  • Received : 2015.11.12
  • Accepted : 2015.12.21
  • Published : 2015.12.31


In order to isolate compost-promoting bacteria with high activity of cellulase and xylanase, spent mushroom substrates with sawdust were collected from mushroom cultivation farm, Jinju, Gyeongnam in Korea. Among of the isolates, one strain, designated CA105 was selected by agar diffusion method. The strain CA105 was identified as members of the Bacillus subtilis by biochemical characteristics using VITEK 2 system. Comparative 16S rRNA gene sequence analysis showed that isolate CA105 formed a distinct phylogenetic tree within the genus Bacillus and was most closely related to Bacillus subtilis with 16S rRNA gene sequence similarity of 98.9%. On the basis of its physiological properties, biochemical characteristics and phylogenetic distinctiveness, isolate CA105 was classified within the genus Bacillus subtilis, for which the name Bacillus subtilis CA105 is proposed. The cellulase and xylanase activity of B. subtilis CA105 was slightly increased according to bacterial population from exponential phase to stationary phase in growth curve for Bacillus sp. CA105.


Bacillus subtilis CA105;Cellulase;Compost-promoting bacteria;Spent mushroom substrates;Xylanase


  1. Han HS, Woo S, Kim DK, Heo BG, Lee KD. 2010. Effects of composts on the growth, yield and effective components of Turmeric (Curcuma longa L.). Korean J Environ Agri. 29:138-145.
  2. Hong JH, Park KJ. 2009. Composting characteristics of food waste-poultry manure mixture inoculated with effective microorganisms. J Lives Hous Env. 15:59-68.
  3. Jeong JY, Jung KY, Nam SS. 1999. Evaluation of qualities with or without microbial inoculation for food waste composting. Korean J Environ Agri. 18:280-286.
  4. Kim DJ, Shin HJ, Min BH, Yoon KH. 1995. Isolation of a Thermophilic Bacillus sp. producing the thermostable cellulase-free xylanase, and properties of the enzyme. Kor J Appl Microbial biotechnol. 23:304-310.
  5. Kim JY, Heo SH, Hong JH. 2004. Isolation and characterization of an alkaline cellulase produced by alkalophilic Bacillus sp. HSH-810. Kor J Appl Microbial biotechnol. 40:139-146.
  6. Kim TI, Han JD, Jeon BS, Ha SW, Yang CB, Kim MK. 1999. Isolation and characterization of bacillus subtilis CH-10 secreting cellulase from catttle manure. J Microbial. 35:277-282.
  7. Lee JH, Choi SH. 2006. Xylanase production by Bacillus sp. A-6 isolated from rice bran. J Microbiol Biotechnol. 16:1856-1861.
  8. Miller GL, Blum R, Glennon WE, Burton AL. 1960. Measurement of carboxymethyl cellulase activity. Ana Biochem. 2:127-132.
  9. Nakano MM, Marahiel MA, Zuber P. 1988. Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. J Bacteriol. 170:5662-5668.
  10. Regine MD, Ptak M, Peypoux F, Michel G. 1985. Pore-forming properties of iturin A: a lipopeptide antibiotic. Biochim Biophys Acta. 815:405-409.
  11. Roongsawang T, Kameyama T, Haruki M, Morikawa M. 2002. Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: bacillomycin L, plipastain and surfactin. Extremophiles 6:499-506.
  12. Schallmey M, Singh A, Ward OP. 2004. Developments in the use of Bacillus species for industrial production. Can J Microbiol. 50:1-17.
  13. Seki T, Chung CK, Mikami H, Oshima Y. 1978. Deoxyribonucleic acid homology and taxonomy of the genus Bacillus. Int J Syst Bacteriol. 28:182-189.
  14. Shin PG, Cho SJ. 2011. Cellulase and Xylanase Activity of Compost-promoting Bacteria Bacillus sp. SJ21. Korean J Soil Sci Fert. 44:836-840.
  15. Tchobanoglous G, Theisen H, Vigil SA. 1993. Integrated solid waste management, p. 689-691 In: Engineering, principles and management issues. McGraw-Hill Inter- national Editions.
  16. Vanittanakam N, Loeffler W. 1986. Fengycin-a novel antifungal lipopeptide antibiotics produced by Bacillus subtilis F29-3. J Antibio Tokyo 39:888-901.
  17. Williams BC, McMullan JT, McCahey S. 2001. An initial assessment of spent mushroom compost as apotential energy feedstock. Biores Technol. 79:227-230.


Supported by : 농촌진흥청