DOI QR코드

DOI QR Code

저품위 석탄의 원지반에서의 생물학적 메탄가스 생산에 관한 기초연구

왕페이;전지영;임학상;윤석표
Wang, Fei;Jeon, Ji-Young;Lim, Hak-Sang;Yoon, Seok-Pyo

  • 투고 : 2015.08.19
  • 심사 : 2015.09.07
  • 발행 : 2015.12.30

초록

원지반에서의 저품위 석탄층의 생물학적 메탄 생산을 위한 기초연구를 수행하였다. 인도네시아산 갈탄을 시료로 이용하였으며, 조건을 달리하여 BMP(Biochemical Methane Potential) 실험을 수행하였다. 갈탄에 영양물질과 혐기성 슬러지만 제공한 경우, 온도(23, $30^{\circ}C$)나 석탄의 입자크기는 메탄가스 생산에 영향을 주지 않았다. 이는 가용한 용해성 유기물질이 낮기 때문이다. 외부탄소원으로 볏짚을 갈탄에 첨가한 후 BMP 실험을 수행하였으며, 60일간의 BMP 실험 후 볏짚 첨가에 의한 메탄가스 발생량은 94.4~110.4 mL/g VS이었다. BMP 실험 후 갈탄의 발열량은 볏짚 첨가량이 증가할수록 감소하는 경향을 보였다. 이는 볏짚의 혐기성 분해와 함께 갈탄의 분해가 이루어졌음을 의미한다. 따라서 원지반에서의 저품위 석탄층의 생물학적 메탄 생산의 초기 운전 시에 볏짚을 탄소원으로 사용할 수 있다.

키워드

생물학적 메탄 생성;갈탄;볏짚

참고문헌

  1. World Energy Resources, 2013 Survey, World Energy Council (2013).
  2. Jones, E.J.P., Voytek, M.A., Corum, M.D., Orem, W.H., "Simulation of methane generation from nonproductive coal by addition of nutrients or a microbial consortium", Applied and Environmental Microbiology, 76(21), pp.7013-7022. (2010). https://doi.org/10.1128/AEM.00728-10
  3. Jones, E.J.P., Voytek, M.A., Warwick, P.D., Corum, M.D., Cohn, A., Bunnell, J.E., Clark, A.C., Orem,W.H., "Bioassay for estimating the biogenic methane-generating potential of coal samples", International Journal of Coal Geology, 76, pp.138-150. (2008).
  4. Gallagher, L.K., Glossner, A.W., Landkamer, L.L., Figueroa, L.A., Mandernack, K.W., Marr, J.M., "The effect of coal oxidation on methane production and microbial community structure in Powder River Basin coal", International Journal of Coal Geology, 115, pp.71-78. (2013). https://doi.org/10.1016/j.coal.2013.03.005
  5. Opara, A., Adams, D.J., Free, M.L. McLennan, J., and Hamilton, J., "Microbial production of methane and carbon dioxide from lignite, bituminous coal, and coal waste materials", Applied and Environmental Microbiology, 96-97, pp. 1-8. (2012).
  6. Haider, R., Ghauri, M.A., SanFilipo, J.R,, Jones, E.J., Orem, W.H., Tatu, C.A., Akhtar, K., Akhtar, N., "Fungal degradation of coal as a pretreatment for methane production", Fuel, 104, pp.717-725. (2013). https://doi.org/10.1016/j.fuel.2012.05.015
  7. Krüger, M., Beckmann, S., Engelen, B., Thielemann, T., Cramer, B., Schippers, A., and Cypionka, H., "Microbial methane formation from hard coal and timber in an abandoned coal mine", Geomicrobiology Journal, 25, pp. 315-321. (2008). https://doi.org/10.1080/01490450802258402
  8. Harris, S.H., Smith, R.L., and Barker, C.E., "Microbial and chemical factors influencing methane production in laboratory incubations of low-rank subsurface coals", International Journal of Coal Geology, 76, pp.46-51. (2008). https://doi.org/10.1016/j.coal.2008.05.019
  9. Huang Z., Urynowicz, M.A., Colberg, P.J.S., "Bioassay of chemically treated subbituminous coal derivatives using Pseudomonas putida F1", International Journal of Coal Geology, 115, pp.97-105. (2013). https://doi.org/10.1016/j.coal.2013.01.012
  10. Shelton, D.R. and Tiedje, J.M., "General method for determining anaerobic biodegradation potential", Appl Environ Microbiol, 47(4), pp.850-854. (1984).
  11. APHA, AWWA, and WEF, Standard Methods for the Examination of Water and Wastewater, 20th ed. (1998).

과제정보

연구 과제 주관 기관 : 한국에너지기술평가원(KETEP)