돈분뇨 처리수 유래 질소와 인 제거를 위한 식물정화법 활용과 바이오매스의 바이오메탄 잠재성 연구

DOI QR코드

DOI QR Code

사티카;최홍림;렝가맨
Sudiarto, Sartika Indah Amalia;Choi, Hong Lim;Renggaman, Anriansyah

  • 투고 : 2015.08.26
  • 심사 : 2015.09.25
  • 발행 : 2015.12.30

초록

본 연구는 거대억새(Miscanthus sacchariflorus var Geode Uksae-1)와 갈대(Phragmites australis)를 활용하여 돈분뇨 처리수 유래 영양염류(질소 및 인) 제거를 정량적으로 분석하고 생산된 바이오매스의 총 에너지가와 바이오메탄 잠재성 분석을 목적으로 수행되었다. 식물들은 일반토양과 사질토 또는 일반토양, 사질토 및 바이오세라믹의 혼합 여재로 채워진 용기에서 다루어졌다. 사용된 돈분뇨 처리수의 총질소와 총인함량은 각각 222.78 mg/L 과 66.11 mg/L에 해당하였다. 총질소와 총인 모두 바이오세라믹 첨가구에서 높은 제거율을 보였다. 거대억새에서 총질소 제거율이 가장 높게 나타났다(96.14%). 하지만 식물체의 원소분석 결과 갈대의 질소함량이 거대억새보다 더 높게 나타나 갈대의 질소흡착력이 더 뛰어난 것으로 판단된다. 반면 가장 높은 총 인 제거율을 보인 처리구는 갈대로 98.12%의 값을 보였다. 식물체 셀룰로스 함량은 일반토양 처리구보다 바이오세라믹 처리구에서 약 3~6% 더 높게 나타나 바이오세라믹은 식물섬유 형성에 영향을 미치는 것으로 사료된다. 본 연구에서 생산된 바이오매스의 바이오메탄 잠재성 분석결과 약 $57.01{\sim}99.25L-CH_4/kg$ VS의 값을 보였다. 리그닌은 식물의 바이오매스 분해를 방해하는 요소로 일반토양-사질토 여재를 사용한 갈대 처리구에서 가장 높게 나타나 메탄 생산력이 떨어지는 것으로 판단된다.

키워드

총 질소;총 인;바이오매스;바이오메탄

참고문헌

  1. Suresh, A. and Choi, H.L. "Estimation of nutrients and organic matter in Korean swine slurry using multiple regression analysis of physical and chemical properties", Bioresource technology, 103, pp. 8848-8859. (2011).
  2. Vymazal, J. "Plants used in constructed wetlands with horizontal subsurface flow: a review", Hydrobiologia, 674, pp. 133-156. (2011). https://doi.org/10.1007/s10750-011-0738-9
  3. Seo, D.C., DeLaune, R.D., Park, W.Y., Lim, J.S., Seo, J.Y., Lee, D. J., Cho, J.S., and Heo, J.S. "Evaluation of a hybrid constructed wetland for treating domestic sewage from individual housing units surrounding agricultural villages in South Korea", J. Environ. Monit., 11, pp. 134-144. (2008).
  4. Seo, D.C., Hwang, S.H., Kim, H.J., Cho, J.S., Lee, H.J., DeLaune, R., Jugsujinda, A., Lee, S.T., Seo, J.Y., and Heo, J.S. "Evaluation of 2- and 3-stage combinations of vertical and horizontal flow constructed wetlands for treating greenhouse wastewater", Ecol. Eng., 32, pp. 121-132. (2008). https://doi.org/10.1016/j.ecoleng.2007.10.007
  5. Zhu, S.X., Ge, H.L., Ge, Y., Cao, H.Q., Liu, D., Chang, J., Zhang, C.B., Gu, B.J., and Chang, S.X. "Effects of plant diversity on biomass production and substrate nitrogen in a subsurface vertical flow constructed wetland". Ecol. Eng., 36, pp. 1307-1319. (2010). https://doi.org/10.1016/j.ecoleng.2010.06.007
  6. Köbbing, J.F., Thevs, N., and Zerbe, S. "The utilisation of reed (Phragmites australis): a review", Mires and Peat,. 13, pp. 1-14. (2013).
  7. An, G.H., Kim, J.K., Moon, Y.H., Cha, Y.L., Moon, Y.M., Koo, B.C., and Park, K.G. "A new genotype of Miscanthus sacchariflorus Geodae-Uksae 1, identified by growth characteristics and a specific SCAR marker", Bioprocess Biosyst. Eng., 36, pp. 695-703. (2013). https://doi.org/10.1007/s00449-013-0893-7
  8. Caron, C., Riviere, L-M., and Guillemain, G. "Gas diffusion and air-filled porosity: Effect of some oversize fragments in growing media". Canadian Journal of soil science, 85, pp. 57-65. (2005). https://doi.org/10.4141/S03-086
  9. Haigler, C.H., Ivanova-Datcheva, M., Hogan, P.S., Salnikov, V.V., Hwang, S., Martin, K., and Delmer, D.P. "Carbon partitioning to cellulose synthesis". Plant molecular biology, 47, pp. 29-51. (2001). https://doi.org/10.1023/A:1010615027986
  10. Parikh, J., Channiwala, S.A., and Ghosal, G.K. "A correlation for calculating HHV from proximate analysis of solid fuels", Fuel, 84, pp. 487-494. (2005). https://doi.org/10.1016/j.fuel.2004.10.010
  11. Li, Y., Zhang, R., Liu, G., Chen, C., He, Y., and Liu, X. "Comparison of methane production potential, biodegradability, and kinetics of different organic substrates", Bioresource Technol., 149, pp. 565-569. (2001).
  12. Thomsen, S.T., Spliid, H., and Ostergard, H. "Statistical prediction of biomethane potential based on the composition of lignocellulosic biomass", Bioresource Technol., 154, pp. 80-86. (2014). https://doi.org/10.1016/j.biortech.2013.12.029