도계폐기물의 열가수분해 반응에 따른 열전달 특성 연구

DOI QR코드

DOI QR Code

송형운;정희숙;김충곤
Song, Hyoung Woon;Jung, Hee Suk;Kim, Choong Gon

  • 투고 : 2015.11.23
  • 심사 : 2015.12.08
  • 발행 : 2015.12.30

초록

본 연구에서 목적은 열가수분해 반응기에 최적설계를 위해 반응온도에 따른 도계폐기물의 열전도도를 정량하는 것이다. 이에 반응온도에 따른 탈수슬러지의 열전도도를 연속적으로 정량한 결과, 반응온도가 증가할수록 열가수분해 반응에 의한 고온, 고압에 의해 슬러지가 열적으로 가용화된다. 따라서, 슬러지 세포내에 결합수가 자유수로 용출되어 고상의 탈수슬러지가 액상의 슬러리로 상태가 변화된다. 그 결과 반응초기인 반응온도 $20^{\circ}C$에서 도계슬러지에 열전도도가 물에 비해 2.11배정도 낮지만 $200^{\circ}C$에서는 도계슬러지의 열전도도가 $0.677W/m{\cdot}^{\circ}C$로 물과 유사하다. 따라서 열가수분해에 의한 슬러지의 물리적 특성변화는 열전달 효율에 매우 중요한 인자임을 확인하였고, 열가수분해반응기 최적 설계를 위한 경계조건으로 실험 측정값과 일치도가 99.69%인 반응온도에 따른 열전도도 함수를 도출하였다.

키워드

열가수분해;도계폐기물;열전도도;탈수슬러지;결합수

참고문헌

  1. Ministry of environment, Livestock waste treatment statistics livestock waste generation amount and treatment status (2012).
  2. Lee, J.H., Lee, J.M., Lim J.S., Park, T.J., and Byun, I.G., "Enhancement of microwave effect with addition of chemical agents in solubilization of waste activated sludge", J. of Industrial and Engineering Chemistry, 24, pp. 359-364. (2015). https://doi.org/10.1016/j.jiec.2014.12.019
  3. Toshikazu S., Mio N., Hiroyuki Y., Hiroaki K., Minoru N., Tadahiro F., Hiroshi S., Akihiko T., and Masaaki H., "High-pressure jet device for activated sludge reduction: Feasibility of sludge solubilization", Biochemical Engineering Journal, 100, pp. 1-8. (2015). https://doi.org/10.1016/j.bej.2015.03.022
  4. Neyens, E. and Baeyens, J., "A review of thermal sludge pre-treatment processes to improve dewaterability", J of Hazardous Materials, 98(B), pp. 51-67. (2003).
  5. Jose M.A., Sara I.P., Jezabel S., Roberto de la C., Juan R. Portela, and Enrique N., "Enhancement of methane production in mesophilic anaerobic digestion of secondary sewage sludge by advanced thermal hydrolysis pretreatment", Water Research, 71, pp. 330-340. (2015). https://doi.org/10.1016/j.watres.2014.12.027
  6. Bougrier, C., Delgenes, J.P. and Carrere, H., "Effects of thermal treatments on five different waste activated sludge samples solubilisation", Physical properties and anaerobic digestion, Chem. Eng. J. 139(2), pp. 236-244. (2008). https://doi.org/10.1016/j.cej.2007.07.099
  7. Yonggang X., Huajie L.S., Chen, N.D., Xiaohu D., and Ning L.., "Effects of thermal hydrolysis on organic matter solubilization and anaerobic digestion of high solid sludge", Chemical Engineering Journal. 264, pp. 174-180. (2015). https://doi.org/10.1016/j.cej.2014.11.005
  8. Fourier. J., The Analytical Theory of Heat, Dover Publications, New York (1955).
  9. Incropera, F.P. and Dewitt, D.P., Fundamentals of Heat and Mass Transfer, John Wiley & Sons (1996).
  10. Han, S.K., Song, H.W., Choi, C.S., Kim, H. and Lee, S.E., "Physicochemical properties of sewage sludge according to thermal hydrolysis reaction temperature", J. of Korea Society of Waste Management, 29(4), pp. 414-420. (2012).
  11. Song, H.W., Park, K.J., Han, S.K, and Jung, H.S., "Thermal conductivity characteristics of dewatered sewage sludge by thermal hydrolysis reaction", 64(12), pp. 1284-1389. (2014).
  12. Kirillov, P.L., Thermophysical properties of materials for nuclear engineering, Obninsk (2006).
  13. Ramires, M.L.V., Nieto de Castro, C.A., Nagasaka, Y., Nagashima, A., Assael, M.J. and Wakeham, W.A., Standard Reference Data for the Thermal Conductivity of Water, IUPAC, pp. 1377-1381 (1995).
  14. Song, H.W., Han, S.K., Kim, C.G. and Shin, H.G., "A study on the viscosity characteristics of dewatered sewage sludge according to thermal hydrolysis reaction", J. of KORRA, 22(1), pp. 27-34. (2014).

과제정보

연구 과제 주관 기관 : 농림축산부