Biophysical properties of PPF/HA nanocomposites reinforced with natural bone powder

  • Received : 2015.03.19
  • Accepted : 2015.11.16
  • Published : 2015.09.25


Biodegredable and injectable nanocomposites based on polypropylene fumarate (PPF) as unsaturated polyester were prepared. The investigated polyester was crosslinked with three different monomers namely N-vinyl pyrrolidone (NVP), methyl methacrylate (MMA) and a mixture of NVP and MMA (1:1 weight ratio) and was filled with 45 wt% of hydroxyapatite (HA) incorporated with different concentrations of chemically treated natural bone powder (NBP) (5, 10 and 15 wt%) in order to be used in treatment of orthopedics bone diseases and fractures. The nanocomposites immersed in the simulated body fluid (SBF) for 30 days, after the period of immersion in-vitro bioactivity of the nanocomposites was studied through Fourier transform infrared (FTIR), scanning electron microscope (SEM), energy dispersive X-ray (EDX) in addition to dielectric measurements. The degradation time of immersed samples and the change in the pH of the SBF were studied during the period of immersion.


biodegradable polyester;nanocomposites;bone powder;dielectric spectroscopy;biophysical properties


  1. Abd-El-Messieh, S.L. (2002), "Dielectric relaxation of binary systems of some disubstituted fumarates with acrylonitrile and vinylacetate in CCl 4 solutions", J. Mol. Liq., 95(2), 167-182.
  2. Abd-El-Messieh, S.L. and Abd-El-Nour, K.N. (2003), "Effect of curing time and sulfur content on the dielectric relaxation of styrene butadiene rubber", J. Appl. Polym. Sci., 88(7), 1613-1621.
  3. Amor, I.B., Rekik, H., Kaddami, H., Raihane, M., Arous, M and Kallel, A. (2009), "Studies of dielectric relaxation in natural fiber-polymer composites", J. Electrostat, 67(5), 717-722.
  4. Chlopek, J., Morawska-Chochol, A. and Szaraniec, B. (2010), "The influence of the environment on the degradation of polylactides and their composites", J. Achv. Mater. Manuf. Eng., 43(1), 72-79.
  5. Fantner ,G.E. et al. (2004), "Influence of the degradation of the organic matrix on the microscopic fracture behavior of trabecular bone", Bone, 35, 1013-1022.
  6. Gaharwar, A.K., Schexnailder, P.J. and Schmidt, G. (2011), "Nanocomposite polymer biomaterials for tissue repair of bone and cartilage", A Material Science Perspective Nanomaterial, Nanobiomaterials Handbook, Ed. B. Sitharaman, CRC Press, Chapter 24.
  7. Haroun, A.A. and Migonney, V. (2010), "Synthesis and in vitro evaluation of gelatin/hydroxyapatite graftcopolymers to form bionanocomposites", J. Biol.Macromol., 46(3), 310-316.
  8. Havriliak, S. and Havriliak, S.J. (1997), Dielectric and mechanical relaxation in materials: analysis, interpretation and application to polymers, Hanser, New York.
  9. He, S., Timmer, M.D., Yaszemski, M.J., Yasko, A.W., Engel, P.S. and Mikos, A.G. (2001), "Synthesis of biodegradable poly (propylene fumarate) networks with poly (propylene fumarate)-diacrylate macromers as crosslinking agents and characterization of their degradation products", Polymer, 42(3), 1251-1260.
  10. Horch, R.A., Shahid, N., Mistry, A.S., Timmer, M.D., Mikos, A.G. and Barron, A.R. (2004), "Nanoreinforcement of poly (propylene fumarate)-based networks with surface modified alumoxane nanoparticles for bone tissue engineering", Biomacromol., 5(5), 1990-1998.
  11. Hu, Y., Motzer, H.R., Etxeberria, A.M., Fernandez-Berridi, M.J., Iruin, J.J., Painter, P.C and Coleman, M. M. (2000), "Concerning the self-association of N-vinyl pyrrolidone and its effect on the determination of equilibrium constants and the thermodynamics of mixing", Macromol. Chem. Phys., 201(6), 705-714.<705::AID-MACP705>3.0.CO;2-9
  12. Jayabalan, M., Shalumon, K.T., Mitha, M.K., Ganesan, K. and Epple, M. (2010), "Effect of hydroxyapatite on the biodegradation and biomechanical stability of polyester nanocomposites for orthopaedic applications", Acta Biomater., 6(3), 763-775.
  13. Johnson, G.S., Mucalo, M.R., Lorier, M.A., Gieland, U. and Mucha, H. (2000), "The processing and characterization of animal-derived bone to yield materials with biomedical applications. Part II: milled bone powders, reprecipitated hydroxyapatite and the potential uses of these materials", J. Mat. Sci.: Mat. Med., 11(7), 727-741.
  14. Kamel, N.A., Abou Aiaad, T.H., Iskander, B.A., Khalil, S.K.H., Mansour, S.H., Abd El-Messieh, S.L. and Abd El-Nour, K.N. (2010), "Biophysical studies on bone cement composites based on polyester fumarate", J. Appl. Polym. Sci., 116(2), 876-885.
  15. Kamel, N.A., Abd-El-Messieh, S.L., Mansour, S.H., Iskander, B.A., Khalil, W.A. and Abd-El-Nour, K.N. (2012), "Biophysical properties of crosslinked poly (propylene fumarate)/hydroxyapatite nanocomposites", Rom. J. Biopys, 22(3-4), 189-214.
  16. Langer, R. and Vacanti, J.P. (1993), "Tissue engineering", Science, 260, 920-926.
  17. Lee, J.W., Lan, P.X., Kim, B., Lim, G. and Cho, D.W. (2008a), "Fabrication and characteristic analysis of a poly (propylene fumarate) scaffold using micro stereolithography technology", J. Biomed. Mater. Res. B: Appl. Biomater., 87(1), 1-9.
  18. Lee, K.W., Wang, S., Yaszemski, M.J. and Lu, L. (2008b), "Physical properties and cellular responses to crosslinkable poly (propylene fumarate)/hydroxyapatite nanocomposites", Biomaterials, 29(19), 2839-2848.
  19. Maruyama, M. and Ito, M. (1996), "In vitro properties of a chitosan bonded self hardening paste with hydroxyapatite granules", J. Biomed. Mater. Res., 32(4), 527-532.<527::AID-JBM5>3.0.CO;2-T
  20. Ma, P.X. (2004), "Scaffolds for tissue fabrication", Mater. Today, 7, 30-40.
  21. Ma, P.X. (2005), "Tissue engineering", Encyclopedia of Polymer Science and Technology, Eds. Kroschwitz JI, John Wiley & Sons, Inc., Hoboken, NJ.
  22. Ma, P.X. (2008), "Biomimetic materials for tissue engineering", Adv. Drug Deliv. Rev., 60(2), 184-198.
  23. McMorrow, R.C. and Klosterman, D. (2003), "Advancing materials in the global economy-applications", Emerging Markets and Evolving Technologies International Symposium and Exhibition, Long Beach, CA, May.
  24. Mohamed, M.G., Abd-El-Messieh, S.L., El-Sabbagh, S. and Younan, A.F. (1998), "Electrical and mechanical properties of polyethylene-rubber blends", J. Appl. Polym. Sci., 69(4), 775-783.<775::AID-APP16>3.0.CO;2-O
  25. Ozawa, M. and Suzuki, S. (2002), "Microstructural development of natural hydroxyapatite originated from fish bone waste through heat treatment", J. Am. Ceram. Soc., 85(5), 1315-1317.
  26. Pathania, D. and Singh, D. (2009), "A review on electrical properties of fibre reinforced polymer composites", Int. J. Theor. Appl. Sci., 1(2), 34-37.
  27. Ramesh, S., Yahaya, A.H. and Arof, A.K. (2002), "Dielectric behaviour of PVC-based polymer electrolytes", Solid. State. Ionics., 152, 291-294.
  28. Sengwa, R.J. and Sankhla, S. (2007), "Dielectric dispersion study of coexisting phases of aqueous polymeric solution: Poly (vinyl alcohol)+poly (vinyl pyrrolidone) two-phase systems", Polymer, 48(9), 2737-2744.
  29. Shi, X., Hudson, J.L., Spicer, P.P., Tour, J.M., Krishnamoorti, R. and Mikos, A.G. (2006), "Injectable nanocomposites of single-walled carbon nanotubes and biodegradable polymers for bone tissue engineering", Biomacromol., 7(7), 2237-2242.
  30. Temenoff, J.S., Kasper, F.K. and Mikos, A.G. (2007), "Fumarate-based macromers as scaffolds for tissue engineering applications", Topics in Tissue Engineering, Eds. R. Reis, E. Chiellini, 3, 1-16.
  31. Timmer, M.D., Ambrose, C.G. and Mikos, A.G. (2003), "In vitro degradation of polymeric networks of poly (propylene fumarate) and the crosslinking macromer poly (propylene fumarate)-diacrylate", Biomater., 24(4), 571-577.
  32. Yaszemski, M.J., Payne, R.G., Hayes, W.C., Langer, R. and Mikos, A.G. (1996), "In vitro degradation of a poly (propylene fumarate)-based composite material", Biomater., 17(22), 2127-2130.
  33. Zhan, M., Wool, R.P. and Xiao, J.Q. (2011), "Electrical properties of chicken feather fiber reinforced epoxy composites", Compos. Part A: Appl. Sci. Manuf., 42(3), 229-233.