Regional Vulnerability Assessment of Invasive Alien Plants in Seoul and Gyeonggi Province

서울시 및 경기도의 생태계교란식물 취약지역 평가

  • Received : 2015.06.25
  • Accepted : 2015.12.13
  • Published : 2015.12.31


This study was conducted to develop an environmental index for assessing the vulnerability of areas with invasive alien plants. To that end, "Regional Vulnerability Numerical Index" (RVNI) was developed with a spatial statistical technique and applied to Seoul and Gyeonggi-do area first. The results are as follows. First, RVNI was high in stream areas. Second, RVNI was lowest in mountain areas. It indicates that stream areas are vulnerable to invasive alien plants. In terms of regions, Guri City is most vulnerable and Gapyeong-gun is the least vulnerable. To expand and manage the invasive alien plants, a control protocol should be developed by considering the physiology and ecology by invasive alien plant. Also, related policies should be pursued based on the results. Thus, the findings of this study can be used as baseline data for setting policies for invasive alien species management.


Alien species;Species distribution models;Biodiversity;Climate change


  1. McCormack, J. E.․A. J. Zellmer and L. L. Knowles. 2010. Does niche divergence accompany allopatric divergence in Aphelocoma jays as predicted under ecological speciation?: insights from tests with niche models. Evolution. 64(5): 1231-1244.
  2. Merow, C.․M. J. Smith and J. A. Silander. 2013. A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter. Ecography. 36(10): 1058-1069.
  3. Mooney, H. A. 2005. Invasive alien species: a new synthesis(Vol. 63). Island press.
  4. Naimi, B.․A. K. Skidmore․T. A. Groen and N. A. Hamm. 2011. Spatial autocorrelation in predictors reduces the impact of positional uncertainty in occurrence data on species distribution modelling. Journal of Biogeography. 38(8): 1497-1509.
  5. NIER. 2007. Monitoring of invasive alien species designated by the wild life protection act. National Institute of Environmental Research. (in Korean)
  6. NIER. 2008. Monitoring of invasive alien species designated by the wild life protection act(II). National Institute of Environmental Research. (in Korean)
  7. NIER. 2009. Monitoring of invasive alien species designated by the wild life protection act(III). National Institute of Environmental Research. (in Korean)
  8. NIER. 20010. Monitoring of invasive alien species designated by the wild life protection act(IV). National Institute of Environmental Research. (in Korean)
  9. NIER. 2011. Monitoring of invasive alien species designated by the wild life protection act(V). National Institute of Environmental Research. (in Korean)
  10. NIER. 2012. Monitoring of invasive alien species designated by the wild life protection act(VI). National Institute of Environmental Research. (in Korean)
  11. NIER. 2013. Monitoring of invasive alien species designated by the wild life protection act(VII). National Institute of Environmental Research. (in Korean)
  12. Pearson, R. G. ․ C. J. Raxworthy․M. Nakamura and A. Townsend Peterson. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography. 34(1): 102-117.
  13. Perrings, C. ․ Dehnen-Schmutz, K. ․ Touza, J. ․ Williamson, M. (2005). How to manage biological invasions under globalization. Trends in ecology & evolution, 20(5): 212-215.
  14. Phillips, S. J. ․ R. P. Anderson and R. E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological modelling. 190(3): 231-259.
  15. Phillips, S. J. and M. Dudík. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2): 161-175.
  16. Pimentel, D. (Ed.). 2011. Biological invasions: economic and environmental costs of alien plant, animal, and microbe species. CRC Press.
  17. Austin, M. 2007. Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecological modelling. 200(1): 1-19.
  18. Betts, M. G.․ A. W. Diamond․G. J. Forbes․ M. A. Villard and J. S. Gunn. 2006. The importance of spatial autocorrelation, extent and resolution in predicting forest bird occurrence. Ecological modelling. 191(2): 197-224.
  19. Bockstaller, C. and P. Girardin. 2003. How to validate environmental indicators. Agricultural systems. 76(2): 639-653.
  20. Broxton, P. D. ․ X. Zeng․ W. Scheftic and P. A. Troch. 2014. A MODIS-based global 1-km Maximum Green Vegetation Fraction dataset. Journal of Applied Meteorology and Climatology. 53(8): 1996-2004.
  21. Brown, J. L. 2014. SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution. 5(7): 694-700.
  22. CBD. 2008. CBD-Convention on Biological Diversity. Alien Species that Threaten Ecosystems, Habitats or Species [Article 8(h)]. United Nations.
  23. Cloquell-Ballester, V. A. ․ V. A. Cloquell-Ballester ․ R. Monterde-Diaz and M. Csantamarina-Siurana. 2006. Indicators validation for the improvement of environmental and social impact quantitative assessment. Environmental Impact Assessment Review. 26(1): 79-105.
  24. Cousins S. A. and R. Lindborg. 2004. Assessing changes in plant distribution patternsindicator species versus plant functional types. Ecological Indicators. 4(1): 17-27.
  25. Dormann, C. F. 2007. Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Global ecology and biogeography. 16(2): 129-138.
  26. Elith, J. and J. R. Leathwick. 2009. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics 40(1): 677.
  27. Elith, J. ․ S. J. Phillips ․ T. Hastie ․ M. Dudík․Y. E. Chee and C. J. Yates. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions. 17(1): 43-57.
  28. Franklin, J. 2010. Mapping species distributions: spatial inference and prediction. Cambridge University Press.
  29. Gurevitch, J. and D. K. Padilla. 2004. Are invasive species a major cause of extinctions?. Trends in Ecology & Evolution. 19(9): 470-474.
  30. Hof, A. R. ․ R. Jansson and C. Nilsson. 2012. The usefulness of elevation as a predictor variable in species distribution modelling. Ecological Modelling, 246: 86-90.
  31. Hosmer Jr, D. W. and S. Lemeshow. 2004. Applied logistic regression. John Wiley & Sons.
  32. IUCN. 2011. IUCN-International Union for Conservation of Nature. Invasive Species.
  33. Jobbágy E. G. and R. B. Jackson. 2001. The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry. 53(1): 51-77.
  34. Kettunen, M.․P. Genovesi․S. Gollasch․S. Pagad․U. Starfinger․P. Ten Brink and C. Shine. 2008. Technical support to EU strategy on invasive species (IAS)-Assessment of the impacts of IAS in Europe and the EU (final module report for the European Commission). Institute for European Environmental Policy (IEEP). Brussels. Belgium. pp. 43.
  35. Kang, B. H. 2014. Development of environmentallyfriendly control of Burcucumber. Korea Environmental Industry & Technology Institute Technical Reports[403-112-003].
  36. Kil, J. H.․K. C. Shim․S. H. Park․K. S. Koh․ M. H. Suh․Y. B. Ku and H. Y. Kong. 2004. Distributions of Naturalized Alien Plants in South Korea 1. Weed Technology. 18(sp1): 1493-1495.[1493:DONAPI]2.0.CO;2
  37. Liu, C.․M. White and G. Newell. 2013. Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography 40(4): 778-789.
  38. Pimentel, D. ․ S. McNair․J. Janecka․J. Wightman․C. Simmonds, ․ C. O'Connell․ E. Wong․L. Russel․J. Zern․T. Aquino and T. Tsomondo. 2001. Economic and environmental threats of alien plant, animal, and microbe invasions. Agriculture, Ecosystems & Environment. 84(1): 1-20.
  39. Thuiller, W. 2003. BIOMOD-optimizing predictions of species distributions and projecting potential future shifts under global change. Global change biology. 9(10): 1353-1362.
  40. Sala, O. E. ․ F.S. Chapin III ․ J. J. Armesto․ E . Berlow ․ J. Bloompeld ․ R. Dirzo ․ E. Huber-Sanwald․ L. F. Huenneke ․ R. B. Jackson ․ A. Kinzig․ R. Leemans ․ D. M. Lodge ․ H. A. Mooney ․ M. Oesterheld ․ N. L. Poff ․ M. T. Sykes ․ B. H. Walker ․ M. Walker and D. H. Wall. 2000. Global biodiversity scenarios for the year 2100. Science. 287(5459): 1770-1774.
  41. Segurado, P. . M. B. Araújo and W. E. Kunin. 2006. Consequences of spatial autocorrelation for niche-based models. Journal of Applied Ecology. 43(3): 433-444.
  42. Swets, J. A. 1988. Measuring the accuracy of diagnostic systems. Science. 240(4857): 1285-1293.
  43. Van Wilgen, B. W. ․D. M. Richardson ․ D. C. Le Maitre ․ C. Marais and D. Magadlela. 2001. The economic consequences of alien plant invasions: Examples of impacts and approaches to sustainable management in South Africa. Environment, Development and Sustainability. 3(2): 145-168.
  44. Van Wilgen, B. W. ․ B. Reyers ․ D. C. Le Maitre․ D. M. Richardson and L. Schonegevel. 2008. A biome-scale assessment of the impact of invasive alien plants on ecosystem services in South Africa. Journal of Environmental Management. 89(4): 336-349.
  45. Veloz, S. D. 2009. Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. Journal of Biogeography. 36(12): 2290-2299.
  46. Warren, D. L. and S. N. Seifert. 2011. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications. 21(2): 335-342.
  47. Wilcove, D. S. ․ D. Rothstein ․ J. Dubow ․ A. Phillips and E. Losos. 1998. Quantifying threats to imperiled species in the United States. BioScience. 48(8): 607-615.


Supported by : 환경부, 강원대학교 환경연구소