A Detection of Novel Habitats of Abies Koreana by Using Species Distribution Models(SDMs) and Its Application for Plant Conservation

종 분포 모형을 활용한 새로운 구상나무 서식지 탐색, 그리고 식물보전 활용

Kim, Nam-Shin;Han, DongUk;Cha, Jin-Yeol;Park, Yong-Su;Cho, Hyeun-Je;Kwon, Hye-Jin;Cho, Yong-Chan;Oh, Seung-Hwan;Lee, Chang-Seok

  • Received : 2015.11.18
  • Accepted : 2015.12.01
  • Published : 2015.12.31


Korean fir(Abies koreana E.H.Wilson 1920), endemic tree species of Korean peninsula, is considered as vulnerable and endangered species to recent rapid environmental changes such as land use and climate change. There are limited activities and efforts to find natural habitats of Korean fir for conservation of the species and habitats. In this study, by applying SDMs (Species Distribution Models) based on climate and topographic factors of Korean fir, we developed Korean fir's predicted distribution model and explored novel natural habitats. In Mt. Shinbulsan, Youngnam region and Mt. Songnisan, we could find korean fir's two novel habitat and the former was the warmest($13^{\circ}C$ in annual mean temperature), the driest(1,200mm~1,600mm in annual rainfall) and relatively low altitude environment among Korean fir's habitats in Korea. The result of SDMs did not include mountain areas of Gangwon-do as habitats of A. nephrolepis, because there were different contributions of key habitat environment factors, summer rainfall, winter mean temperature and winter rainfall, between A. koreana and A. nephrolepis. Our results raise modification of other distribution models on Korean fir. Novel habitat of Korean fir in Mt. Shinbulsan revealed similar habitat affinity of the species, ridgy and rocky site, with other habitats in Korea. Our results also suggest potential areas for creation of Korea fir's alternative habitats through species reintroduction in landscape and ecosystem level.


Abies koreana;Endangered species;Endemic plant;Species distribution models;Species reintroduction


  1. Aarts, G ․ Fieberg, J. and Matthiopoulos, J. 2012. Comparative interpretation of count, presenceabsence and point methods for species distribution models. Methods in Ecology and Evolution 3: 177-187.
  2. Chakraborty, A. ․ Gelfand, A. E. ․ Wilson, A. M. ․ Latimer, A. M. and Silander, J. A. 2011. Point pattern modelling for degraded presence-only data over large regions. Journal of the Royal Statistical Society, Series C 60: 757-76.
  3. Cho HJ ․ Bae KH ․ Lee CS and Lee CH. 2004. Species Composition and Structure of the Evergreen Coniferous Forest Vegetation of the Subalpine Area (South Korea). Journal of Korean Forest Society 93(5): 372-379.
  4. Daubenmire, R. 1978. Plant Geography: with special reference to North America. Academic Press, New York, NY, pp. 338.
  5. Elith, J. and Leathwick, J. R. 2007. Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines. Diversity and Distributions 13: 265-75.
  6. Elith, J. ․ Phillips, S. J. ․ Hastie, T. ․ Dudk, M. ․ Chee, Y. E. and Yates, C. J. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17: 437.
  7. Fork, D. A. ․ Millar, E. E. and Olwell, M. 1996. Restoring Diversity: Strategies for Reintroduction of Endangered Plants. Washington, DC, Island Press.
  8. Franklin, J. 2009. Mapping Species Distributions: Spatial Inference and Prediction. Cambridge University Press, UK, pp. 320.
  9. Guisan, A. and Thuiller, W. 2005. Predicting species distribution: Offering more than simple habitat models. Ecology Letters 8: 993-1009.
  10. Hannah, L. 2003. Regioinal biodiversity impact assessments for climate change: A guide for protected area managers, p. 235-244. In: Buying Time: A User's Manual for Building Resistance and Resilience to Climate Change in Natural Systems (Hansen, L. J., J. L. Biringer, and J. R. Hoffman). Berlin: World Wildlife Fund Climate Change Program.
  11. Ian W. R. and David I. W. 2013. Equivalence of MAXENT and Poisson Point Process Models for Species Distribution Modeling in Ecology. Biometrics 69(1): 274-81.
  12. Jones, C. C. ․ Acker, S. A. and Halpern, C. B. 2010. Combining local- and large-scale models to predict the distributions of invasive plant species. Ecological Applications 20: 311-326.
  13. Kang SJ ․ Kwak AK and Takao K. 1997. A Phytosociologycal Description of the Abies koreana Forest on Mt. Halla in Cheju Island, Korea. Korean Journal of Ecology 20(2): 293-298.
  14. Kang SJ. 1984. Regeneration Process of Subalpine Coniferous Forest in Mt. Jiri. Korean Journal of Ecology 7(4): 185-193.
  15. KFRI (Korea Forest Research Institute). 2014. Proceeding on the Expert Workshop on Conservation of Abies koreana in Mt. Hallasan. Warm-Temperate Subtropical Forest Research Center, KFRI, Jeju.
  16. Kim, JH ․ Seo CW ․ Kwon HS ․ Ryu JE and Kim MJ. 2012. A Study on the Species Distribution Modeling using National Ecosystem Survey Data. Journal of Environmental Impact Assessment 21(4): 593-607.
  17. Kim NS and Lee HC. 2013. A Study on Changes and Distributions of Korean Fir in Sub-Alpine Zone. Journal of Korean Environmental Restoration Technology 16(5): 49-57.
  18. KNA (Korea National Arboretum). 2014. Steppingstone for conservation of Abies koreana, p. 85-86. In: Forest of Korea (I) Conservation of Korean fir (Abies koreana) in a changing environment. Sumeunkil, Seoul.
  19. KNA (Korea National Arboretum). 2008. Rare plants data book in Korea. Pocheon. pp. 332.
  20. KNA (Korea National Arboretum). 2010. 300 Target Plants Adaptable to Climate Change in the Korean Peninsula. DDeulmunhwa, Daejeon.
  21. Kwon HS ․ Ryu JE ․ Seo CW ․ Kim JY ․ Lim DO and Suh MH. 2012. A Study on Distribution Characteristics of Corylopsis coreana Using SDM. Journal of Environmental Impact Assessment 21(5): 735-743.
  22. Lee CS and Cho HJ. 1993. Structure and Dynamics of Abies koreana Wilson Community in Mt. Gaya. Korean Journal of Ecology 16(1): 75-91.
  23. Lovejoy, T. E. and Hannah, L. 2005. Climate change and biodiversity. Yale University Press, New Haven, CT. pp. 440.
  24. McKenzie, D. and Halpern, C. B. 1999. Modeling the distributions of shrub species in Pacific northwest forests, Forest Ecology and Management 114: 293-307.
  25. Mueller-Dombois, D. and Ellenberg, H. 1974. Aims and Methods of Vegetation Ecology. Wiley and Sons, New York, NY. pp. 547.
  26. Pearce, J. and Lindenmayer, D.1998. Bioclimatic analysis to enhance reintroduction biology of the endangered helmeted honeyeater (Lichenostomus melanops cassidix) in southeastern Australia. Restoration Ecology 6: 238-243.
  27. Phillips, S. J. ․ Anderson, R. P. and Schapire, R. E. 2006. Maximum entropy modeling of species geographic distributions, Ecological Modelling 190: 231-59.
  28. Song KM ․ Kim CS ․ Koh JG ․ Kang CH and Kim MH. 2010. Vegetation Structure and Distributional Characteristics of Abies koreana Forests in Mt. Halla. Journal of the Environmental Sciences 19(4): 415-425.
  29. Trisurat, Y. ․ Shrestha, R. P. and Kjelgren, R. 2011. Plant species vulnerability to climate change in Peninsular Thailand. Applied Geography 31(3): 1106-1114.
  30. van Mantgem, P. J. ․ Stephenson, N. L. ․ Byrne, J. C. ․ Daniels, L. D. ․ Franklin,J. F. ․ Ful, P. Z. ․ Harmon,M. E. ․ Larson, A. J. ․ Smith, J. M. ․ Taylor, A. H. and Veblen, T.T. 2009. Widespread increase of tree mortality rates in the western United States. Science 323 (5913): 521-524. doi: 10.1126/science.1165000.
  31. Watt, A. S. 1947. Pattern and process in the plant community. Journal of Ecology 35: 1-22.
  32. Whittaker, R. H. 1975. Communities and Ecosystems. Macmillan Press, New York, NY. pp. 385.
  33. Wilson, E. H. 1920. Four new conifers from Korea. Journal of the Arnold Arboretum 1: 186-190.
  34. Woodward, F. I. 1987. Climate and Plant Distribution: Cambridge University Press, London, England. pp. 174
  35. Woodward F. I. and McKee, I. F. 1991. Vegetation and Climate. Environment International 17: 535-546.
  36. Yun JH ․ Nakao K ․ Kim JH ․ Kim SY ․ Park CH and Lee BY. 2014. Habitat prediction and impact assessment of Neolitsea sericea (Blume) Koidz. under Climate Change in Korea. Journal of Environmental Impact Assessment 23(2): 101-111.
  37. Lee TB. 1970. Abies koreana and Its New Forms Discovered. Journal of Korean Forest Society 10: 101-111.

Cited by

  1. Potential climate change effects on tree distributions in the Korean Peninsula: Understanding model & climate uncertainties vol.353, 2017,
  2. Future distributions of warm-adapted evergreen trees, Neolitsea sericea and Camellia japonica under climate change: ensemble forecasts and predictive uncertainty 2017,


Grant : 산림자원조사및정보화연구