FT-IR을 이용한 중요 광물의 적외 방출도 스펙트럼 측정

DOI QR코드

DOI QR Code

이유정;박중현;이광목
Lee, Yu-Jeong;Park, Joong-Hyun;Lee, Kwang-Mog

  • 투고 : 2015.04.08
  • 심사 : 2015.10.19
  • 발행 : 2015.12.31

초록

This study measured the emissivity spectra of 5 major rock-forming minerals using a Fourier Transform Infrared (FT-IR) spectrometer in the spectral region of $650{\sim}1400cm^{-1}$. The mineral samples are quartz, albite, bytownite, anorthite, and sandstone. We compared emissivity spectra measured in this study with spectra provided by Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Arizona State University (ASU). The spectral features of emissivity such as Reststrahlen Band (RB) and Christiansen Feature (CF) locations were compared. Results showed that both CF and RB locations of emissivity spectra measured in this study were similar to those from ASTER and ASU. In the case of quartz, the RB was occurred in the region of $700{\sim}850cm^{-1}$ and $1050{\sim}1250cm^{-1}$. The spectral position of emissivity peak was in good agreement with the location of ASTER and ASU. For plagioclase (albite, bytownite, and anorthite), the spectral location of CF was shifted toward larger wavenumber and the emissivity value was increased in the region of $870{\sim}1200cm^{-1}$ with Ca percentage. The CF of anorthite and bytownite was occurred at $1245.79cm^{-1}$, and that of albite was occurred at $1283.79cm^{-1}$. We also confirmed that emissivity feature of sandstone includes both emissivity features of quartz and calcite. However, there were some differences in the magnitude of emissivity and locations of RB and CF. These were due to the differences in measurement methods, and differences in particle size and temperature of samples.

키워드

FT-IR;infrared spectra;mineral composition;emissivity;laboratory measurement

참고문헌

  1. Wagner, C., 2000: Thermal Emission spectrometer of Laboratory Regoliths. Astron. Soc. Pac. Conf. Ser., 196, 233-247.
  2. Baldridge, A. M., S. J. Hook, C. I. Grove, and G. Rivera, 2009: The ASTER spectral library version 2.0. Remote Sens. Environ., 113, 711-715. [Available online at http://speclib.jpl.nasa.gov] https://doi.org/10.1016/j.rse.2008.11.007
  3. Bras, A. L., and S. Erard, 2003: Reflectance spectra of regolioth analogs in the mid-infrared: effects of grain size. Planet. Space Sci., 51, 281-294. https://doi.org/10.1016/S0032-0633(03)00017-5
  4. Cho, A. R., and M. S. Suh, 2013: Evaluation of Land Surface Temperature Operationally Retrieved from Korean Geostationary Satellite (COMS) Data. Remote Sens., 5, 3951-3970. https://doi.org/10.3390/rs5083951
  5. Christensen, P. R., and S. T. Harrison, 1993: Thermal Infrared Emission spectrometer of natural Surfaces: Application to Desert Varnish Coating on Rocks. J. Geophys. Res., 98, 19819-19834. https://doi.org/10.1029/93JB00135
  6. Christensen, P. R., J. L. Bandfield, and V. E. Hamilton, 2000: A thermal emission spectral library of rock-forming minerals. J. Geophys. Res., 105, 9735-9739. [Available online at http://speclib.asu.edu] https://doi.org/10.1029/1998JE000624
  7. Chunnilall, C. J., and E. Theocharous, 2012: Infrared hemispherical reflectance measurements in the 2.5 ${\mu}m$ to 50 ${\mu}m$ wavelength region using a Fourier transform spectrometer. Metrologia, 49, 73-80. https://doi.org/10.1088/0026-1394/49/2/S73
  8. Conel, J. E., 1969: Infrared emissivities of silicates: Experimental results and a cloudy atmosphere model of Spectral emission from condensed particulate mediums. J. Geophys. Res., 74, 1614-1634. https://doi.org/10.1029/JB074i006p01614
  9. Cooper, B. L., J. W. Salisbury, R. M. Killen, and A. E. Potter, 2002: Midinfrared spectral features of rocks and their powders. J. Geophys. Res., 107, 1-17.
  10. Donaldson Hanna, K. L., I. R. Thomas, N. E. Bowles, B. T. Greenhagen, C. M. Pieters, J. F. Mustard, C. R. M. Jackson, and M. B. Wyatt, 2012: Laboratory emissivity measurements of the plagioclase solid solution series under varying environmental conditions. J. Geophys. Res., 117, E11004.
  11. Hapke, B., 1981: Bidirectional reflectance spectroscopy, 1: Theory, J. Geophys. Res., 86, 3039-3054. https://doi.org/10.1029/JB086iB04p03039
  12. Hecker, C., M. van der Mdijde, and F. D. van der Meer, 2010: Thermal infrared spectrometer on feldspars-Successes, limitations and their implications for remote sensing. Earth Sci. Rev., 103, 60-70. https://doi.org/10.1016/j.earscirev.2010.07.005
  13. Henderson, B. G., P. G. Lucey, and B. M. Jakosky, 1996: New laboratory measurements of mid-IR emission spectra of simulated planetary surfaces. J. Geophys. Res., 101, 14969-14975. https://doi.org/10.1029/96JE01089
  14. Hulley, G. C., and S. J. Hook, 2009: Intercomparision of versions 4, 4.1 and 5 of the MODIS Land Surface Temperature and Emissivity products and validation with laboratory measurements of sand samples from the Namib desert, Namidia. Remote Sens. Environ., 113, 1313-1318. https://doi.org/10.1016/j.rse.2009.02.018
  15. Hwang, J. Y., M. I. Jang, J. S. Kim, W. M. Cho, B. S. Ahn, and S. W. Kang, 2000: Mineralogy and chemical composition of the residual soils from South Korea. J. Miner. Soc. Korea, 13, 147-163.
  16. Ishii, J., and A. Ono, 2001: Uncertainty estimation for emissivity measurements near room temperature with a Fourier transforms spectrometer. Meas. Sci. Technol., 12, 2103-2112. https://doi.org/10.1088/0957-0233/12/12/311
  17. Jeong, G. Y., 2008: Bulk and single-particle mineralogy of Asian dust and a comparison with its source soils. J. Geophys. Res., 113, 429-467.
  18. Johnson, J. R., F. Horz, P. G. Lucey, and P. R. Christensen, 2002: Thermal infrared spectrometer of experimentally shocked anorthosite and pyroxenite: Implications for remote sensing of Mars. J. Geophys. Res., 107, 1-14.
  19. King, P. L., M. S. Ramsey, P. F. McMillan, and G. Swayze, 2004: Laboratory Fourier transform infrared spectroscopy methods for geologic samples. In Infrared Spectroscopy in Geochemistry, Exploration Geochemistry and Remotesening, P. L. King, M. S. Ramsey, and G. Swayze, Eds., Mineral. Assoc., 57-92.
  20. Korb, A. R., J. W. Salisbury, and D. M. D'Aris, 1999: Thermal-infrared remote sensing and kirchhoff's law 2. Field measurements. J. Geophys. Res., 104, 15339-15350. https://doi.org/10.1029/97JB03537
  21. Mathew, G., A. Nair, T. K. Gundu Rao, and K. Pande, 2009: Laboratory technique for quantitative thermal emissivity measurements of geological samples. J. Earth System Science, 118, 391-404. https://doi.org/10.1007/s12040-009-0035-4
  22. Milam, K. A., H. Y. McSween, V. E. Hamilton, J. M. Moersch, and P. R. Christensen, 2004: Accuracy of plagioclase compositions from laboratory and Mars spacecraft thermal emission spectra. J. Geophys. Res., 109, 1-16.
  23. Nerry, F., J. Labed, and M. P. Stoll, 1990: Spectral Properties of Land Surfaces in the Thermal infrared 1. Laboratory Measurements of Absolute spectral Emissivity Signatures. J. Geophys. Res., 95, 7027-7044. https://doi.org/10.1029/JB095iB05p07027
  24. Norman, J. M., and F. Becker, 1995: Terminology in thermal infrared remote-sensing of natural surfaces. Agric. Forest Meteor., 77, 153-166. https://doi.org/10.1016/0168-1923(95)02259-Z
  25. Qin, Z., and A. Karnieli, 1999: Progress in the remote sensing of land surface temperature and ground emissivity using NOAA-AVHRR data. Int. J. Remote Sens., 20, 2367-2393. https://doi.org/10.1080/014311699212074
  26. Revercomb, H. E., H. Buijs, H. B. Howell, D. D. Laporte, W. L. Smith, and L. A. Sromovsky, 1988: Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the High-Resolution Interferometer Sounder. Appl. Opt., 27, 3210-3218. https://doi.org/10.1364/AO.27.003210
  27. Ruff, S. W., P. R. Christensen, and P. W. Barbera, 1997: Quantitative thermal emission spectrometer of minerals: A laboratory technique for measurement and calibration. J. Geophys. Res., 102, 14899-14913. https://doi.org/10.1029/97JB00593
  28. Salisbury, J. W., and L. S. Walter, 1989: Thermal infrared (2.5-13.5 ${\mu}m$) Spectroscopic Remote Sensing of Igneous Rock Types on Particulate Planetary Surfaces. J. Geophys. Res., 94, 9192-9202. https://doi.org/10.1029/JB094iB07p09192
  29. Salisbury, J. W., and D. M. D'Aria, 1992: Emissivity of Terrestrial Materials in the 8-14 ${\mu}m$ Atmospheric Window. Remote Sens. Environ., 42, 83-106. https://doi.org/10.1016/0034-4257(92)90092-X
  30. Salisbury, J. W., A. Wald, and D. M. D'Aria, 1994: Thermal-infrared remote sensing and Kirchhoff's law 1. Laboratory measurements. J. Geophys. Res., 99, 11891-11911.
  31. Schmugge, T., S. J. Hook, and C. Coll, 1998: Recovering Surface Temperature and Emissivity from Thermal Infrared Multispectral Data. Remote Sens. Environ., 65, 121-131. https://doi.org/10.1016/S0034-4257(98)00023-6
  32. Sen, G., 2001: Earth's Materials: Minerals and Rocks. Prentice Hall, 560 pp.
  33. Wenrich, M. L., and P. R. Christensen, 1996: Optical constants of minerals derived from emission spectrometer: Application to quartz. J. Geophys. Res., 101, 15921-15931. https://doi.org/10.1029/96JB01153

과제정보

연구 과제 주관 기관 : 환경부