DOI QR코드

DOI QR Code

생분해에 따른 PLGA 멤브레인의 분해속도 및 pH 변화에 대한 연구

시에위잉;박종순;강순국
Xie, Yuying;Park, Jong-Soon;Kang, Soon-Kook

  • 투고 : 2015.08.07
  • 심사 : 2015.09.11
  • 발행 : 2015.09.30

초록

의료용 고분자 PLGA는 높은 생체적합성, 생분해성, 기계적 특성, 생체안정성을 가지고 있으며, 단량체 수량을 조절함으로서 분해기간을 조절할 수 있는 장점이 있다. 본 논문에서는 상전이법을 이용하여 제조된 분자량과 L/D 타입 구성비가 다른 PLGA 멤브레인들을 인산완충생리식염수 하에서 멤브레인의 분자량과 용액의 온도 조건에 따른 생분해 특성을 유추하기 위하여 질량 변화와 용액의 pH값 측정하였으며, DSC와 실사현미경을 이용하여 Tg와 표면구조의 변화을 파악하였다. PLGA의 분자량이 증가할수록 가수분해속도는 기하급수적으로 감소하고 있으며, L/D 타입 구성비에 따라 분해속도와 용액 pH변화의 차이가 크게 나타났다.

키워드

Activation energy;biodegradation;Glass transtion temperature;PLGA membrane;Phase transition method

참고문헌

  1. H. Shin, S. Jo, and A. G. Mikos, Biomimetic materials for tissue engineering, Biomaterials, 24, 4353 (2003) DOI: http://www.ncbi.nlm.nih.gov/pubmed/12922148 https://doi.org/10.1016/S0142-9612(02)00356-3
  2. S. R. Caliaria, M. A. Ramirezb, and B. A. C. Harley, The development of collange -GAG scaffold-membrane composites for tendon tissue engineering, Biomaterials, 32(34), 8990 (2011). https://doi.org/10.1016/j.biomaterials.2011.08.035
  3. C. J. Liao, C, F. Chen, J. H. Chen, S. F. Chiang, Y. J. Lin, and K. Y. Chan, Fabrication of porous biodegradable polymer scaffolds using a solvent merging/particulate leaching method, Journal of Biomedical Materials Research, 59, 681 (2002). DOI: http://www.ncbi.nlm.nih.gov/pubmed/11774329
  4. Agrawal, CM., Niederauer, G.G., and Athanasiou, K.A. Fabrication and characterization of PLA-PGA orthopaedic implants. Tissue Eng. 1, 241, 1995. DOI: http://www.ncbi.nlm.nih.gov/pubmed/19877903 https://doi.org/10.1089/ten.1995.1.241
  5. Agrawal, CM., Niederauer, G.G., Micallef, D. M., and Athanasiou, K.A. The use of PLA-PGA polymers in orthopaedics. In: Wise, D., et al., eds. Encyclopedic Handbook of Biomaterials and Bioengineering. New York: Marcel Dekker, p. 2081, 1995.
  6. Athanasiou, K.A., Schmitz, J.P., Schenck, R. C, Clem, M., Aufdemorte, T., and Boyan, B.D. The use of biodegradable implants for repairing large articular cartilage defects in the rabbit. Transactions of the Orthopaedic Research Society 17(1), 172, 1992.
  7. Athanasiou, K.A., Niederauer, G.G., and Agrawal, CM. Sterilization, toxicity, biocompatibility, and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17(2), 93, 1996. DOI: http://www.ncbi.nlm.nih.gov/pubmed/8624401 https://doi.org/10.1016/0142-9612(96)85754-1
  8. S. I. Jeong, J. H. Kwon, and J. I. LIm, EVA-enhanced embedding medium for histological analysis of 3D porous scaffold material, Biomaterials, 26, 1405 (2009) DOI: http://www.ncbi.nlm.nih.gov/pubmed/19473850
  9. Y. Y. Xie, J. S. Park and S. K. Kang, Study on the characteristics and biodegradable of synthetic PLGA membrane from lactic acid and glycolic acid. Journal of the Korea Academia-Industrial cooperation Society Vol. 16, No. 4 pp. 2965, 2015. DOI: http://scholar.ndsl.kr/schDetail.do?cn=JAKO201516351715641
  10. Linbo Wu, Jiandong ding. In vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering. Biomterials 25 9200) 5821-5830. DOI: http://www.ncbi.nlm.nih.gov/pubmed/15172494 https://doi.org/10.1016/j.biomaterials.2004.01.038
  11. Hirenkumar K. Makadia and Steven J. Siegel. Poly lactic-co-glycolic acid(PLGA) as biodegradation controlled drug delivery carrier. Polymers, 3, 1377-1397; DOI: http://dx.doi.org/10.3390/polym3031377.(2011) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3347861/ https://doi.org/10.3390/polym3031377
  12. C.M.Agrawal, Ph.D., P.E., D. Huang, M.S., J.P. Schmitz, D.D.S., Ph.D., and K.A. Athanasiou, Ph.D., P.E. Elevated temperature degradation of a 50:50 copolymer of PLA-PGA. Tissue engineering Volume 3, Number 4, 1997 DOI: http://online.liebertpub.com/doi/abs/10.1089/ten.1997.3.345 https://doi.org/10.1089/ten.1997.3.345

과제정보

연구 과제 주관 기관 : 한국연구재단